333
Views
19
Downloads
41
Crossref
N/A
WoS
39
Scopus
0
CSCD
Self-toughening ZrB2-SiC based composites are fabricated by in-situ reactive hot pressing. The effect of sintering additive content on the microstructure and mechanical properties of the composites is investigated. Microstructure observation found that the in-situ reactive hot pressing could promote the anisotropic growth of ZrB2 grains and the formation of interlocking microstructure. Such microstructure could improve the mechanical properties, especially, for the fracture toughness. The improved mechanical properties could be attributed to the self-toughening structure related to the ZrB2 platelets and the formed interlocking microstructure, which could trigger various toughening mechanisms such as grain pull-out, crack bridging, crack deflection, and crack branching, providing the main contribution to the high fracture toughness.
Self-toughening ZrB2-SiC based composites are fabricated by in-situ reactive hot pressing. The effect of sintering additive content on the microstructure and mechanical properties of the composites is investigated. Microstructure observation found that the in-situ reactive hot pressing could promote the anisotropic growth of ZrB2 grains and the formation of interlocking microstructure. Such microstructure could improve the mechanical properties, especially, for the fracture toughness. The improved mechanical properties could be attributed to the self-toughening structure related to the ZrB2 platelets and the formed interlocking microstructure, which could trigger various toughening mechanisms such as grain pull-out, crack bridging, crack deflection, and crack branching, providing the main contribution to the high fracture toughness.
This work was supported by research fund for the China Postdoctoral Science Foundation (2016M600201, 2018T110214, 2016M601304), National Natural Science Foundation of China (51805069), Natural Science Foundation of Liaoning Province, China (20170540154), and Aviation Science Foundation of China (2016ZF63007).
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made.
The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.
To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.