387
Views
12
Downloads
24
Crossref
N/A
WoS
28
Scopus
0
CSCD
In the search of lead-free piezoelectric materials, ceramic processing techniques offer potential tools to increase the piezoelectric and ferroelectric properties in addition to new chemical compositions. Powders of pure BNKT16 (Bi0.5(Na0.84K0.16)0.5TiO3) phase were synthesized by sol-gel method with a low crystallization temperature (750 ℃). Ceramic samples were sintered by pressureless sintering (PLS), sinter-forging (SF), and spark plasma sintering (SPS) techniques. Structural, morphological, and chemical characterizations were performed by XRD, Raman, EDS, and SEM. Sintered samples by PLS and SF exhibit rod-like grains associated to bismuth volatility. The highest remanent polarization (11.05 µC/cm2), coercive field (26.2 kV/mm), and piezoelectric coefficient (165 pC/N) were obtained for SF sample. The piezoresponse force microscopy (PFM) analysis shows that the crystallites at the nanoscale exhibit piezoelectric phenomenon and the highest piezoelectric response is reported for PLS sample. The presence of the rhombohedral phase, the increase in grain and crystallite size, and the oriented rod-like inclusions favoring the crystallographic texture are facts that enhance the piezoelectric coefficient for BNKT16 piezoceramics.
In the search of lead-free piezoelectric materials, ceramic processing techniques offer potential tools to increase the piezoelectric and ferroelectric properties in addition to new chemical compositions. Powders of pure BNKT16 (Bi0.5(Na0.84K0.16)0.5TiO3) phase were synthesized by sol-gel method with a low crystallization temperature (750 ℃). Ceramic samples were sintered by pressureless sintering (PLS), sinter-forging (SF), and spark plasma sintering (SPS) techniques. Structural, morphological, and chemical characterizations were performed by XRD, Raman, EDS, and SEM. Sintered samples by PLS and SF exhibit rod-like grains associated to bismuth volatility. The highest remanent polarization (11.05 µC/cm2), coercive field (26.2 kV/mm), and piezoelectric coefficient (165 pC/N) were obtained for SF sample. The piezoresponse force microscopy (PFM) analysis shows that the crystallites at the nanoscale exhibit piezoelectric phenomenon and the highest piezoelectric response is reported for PLS sample. The presence of the rhombohedral phase, the increase in grain and crystallite size, and the oriented rod-like inclusions favoring the crystallographic texture are facts that enhance the piezoelectric coefficient for BNKT16 piezoceramics.
The authors are indebted to CONACYT grant A1-S-9232 for their valuable support. GHC and JRLM are grateful to CONACYT for the Ph.D. scholarship.
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made.
The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.
To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.