AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
PDF (1.4 MB)
Submit Manuscript AI Chat Paper
Show Outline
Show full outline
Hide outline
Show full outline
Hide outline
Research Article | Open Access

Effect of the sintering technique on the ferroelectric and d33 piezoelectric coefficients of Bi0.5(Na0.84K0.16)0.5TiO3 ceramic

Instituto de Ingeniería y Tecnología, Universidad Autónoma de Ciudad Juárez, Av. Del Charro 450 Norte Cd. Juárez, Chihuahua, 32310, México
Centro de Investigación en Materiales Avanzados, Miguel de Cervantes 120, Chihuahua 31109, Chihuahua, México
Centro de Investigación e Innovación Tecnológica, Instituto Politécnico Nacional, Cerrada de Cecati s/n, Azcapotzalco, Santa Catarina, 02250, Ciudad de México, México
Centro de Nanociencias y Nanotecnología, Universidad Nacional Autónoma de México, Km. 107 Carretera Tijuana-Ensenada, AP. 14, Ensenada 22860, Baja California, México
Show Author Information


In the search of lead-free piezoelectric materials, ceramic processing techniques offer potential tools to increase the piezoelectric and ferroelectric properties in addition to new chemical compositions. Powders of pure BNKT16 (Bi0.5(Na0.84K0.16)0.5TiO3) phase were synthesized by sol-gel method with a low crystallization temperature (750 ℃). Ceramic samples were sintered by pressureless sintering (PLS), sinter-forging (SF), and spark plasma sintering (SPS) techniques. Structural, morphological, and chemical characterizations were performed by XRD, Raman, EDS, and SEM. Sintered samples by PLS and SF exhibit rod-like grains associated to bismuth volatility. The highest remanent polarization (11.05 µC/cm2), coercive field (26.2 kV/mm), and piezoelectric coefficient (165 pC/N) were obtained for SF sample. The piezoresponse force microscopy (PFM) analysis shows that the crystallites at the nanoscale exhibit piezoelectric phenomenon and the highest piezoelectric response is reported for PLS sample. The presence of the rhombohedral phase, the increase in grain and crystallite size, and the oriented rod-like inclusions favoring the crystallographic texture are facts that enhance the piezoelectric coefficient for BNKT16 piezoceramics.

Electronic Supplementary Material

Download File(s)
40145_2019_314_MOESM1_ESM.pdf (158.6 KB)


ND Quan, HL Bac, DV Thiet, et al. Current development in lead-free Bi0.5(Na,K)0.5TiO3-based piezoelectric materials. Adv Mater Sci Eng 2014, 2014: 365391.
J Rödel, W Jo, KTP Seifert, et al. Perspective on the development of lead-free piezoceramics. J Am Ceram Soc 2009, 92: 1153-1177.
J Camargo, L Ramajo, F Rubio-Marcos, et al. Ferroelectric properties of Bi0.5(Na0.8K0.2)0.5TiO3 ceramics. Adv Mater Res 2014, 975: 3-8.
P-Y Chen, C-C Chou, T-Y Tseng, et al. Comparative study between conventional and microwave sintered lead-free BNKT ceramics. Ferroelectrics 2009, 381: 196-200.
A Ullah, CW Ahn, A Hussain, et al. The effects of sintering temperatures on dielectric, ferroelectric and electric field-induced strain of lead-free Bi0.5(Na0.78K0.22)0.5TiO3 piezoelectric ceramics synthesized by the sol-gel technique. Curr Appl Phys 2010, 10: 1367-1371.
K Anjali, TG Ajithkumar, PA Joy. Correlations between structure, microstructure, density and dielectric properties of the lead-free ferroelectrics Bi0.5(Na,K)0.5TiO3. J Adv Dielect 2015, 5: 1550028.
AM Gonzalez, L Pardo, ME Montero-Cabrera, et al. Analysis of the rhombohedral-tetragonal symmetries coexistence in lead-free 0.94(Bi0.5Na0.5)TiO3-0.06BaTiO3 ceramics from nanopowders. Adv Appl Ceram 2016, 115: 96-105.
X Liu, SD Xue, F Li, et al. Giant electrostrain accompanying structural evolution in lead-free NBT-based piezoceramics. J Mater Chem C 2018, 6: 814-822.
X Liu, F Li, P Li, et al. Tuning the ferroelectric-relaxor transition temperature in NBT-based lead-free ceramics by Bi nonstoichiometry. J Eur Ceram Soc 2017, 37: 4585-4595.
A Sasaki, T Chiba, Y Mamiya, et al. Dielectric and piezoelectric properties of (Bi0.5Na0.5)TiO3-(Bi0.5K0.5)TiO3 systems. Jpn J Appl Phys 1999, 38: 5564-5567.
W Li, ZJ Xu, RQ Chu, et al. Synthesis and characterization of (Na0.85K0.15)0.5Bi0.5TiO3 ceramics by different methods. Mater Res Bull 2011, 46: 871-874.
E Guilmeau, S Lambert, D Chateigner, et al. Quantitative texture analysis of polyphased oxides by diffraction: Example of Bi2223 sinter-forged ceramic and Y123 foam superconductors. Mat Sci Eng B 2003, 104: 107-112.
JJ Hao, XH Wang, RZ Chen, et al. Preparation of textured bismuth titanate ceramics using spark plasma sintering. J Am Ceram Soc 2004, 87: 1404-1406.
JO Herrera Robles, CA Rodríguez González, SD de la Torre, et al. Dielectric properties of bismuth titanate densified by spark plasma sintering and pressureless sintering. J Alloys Compd 2012, 536: S511-S515.
J Liu, ZJ Shen, M Nygren, et al. SPS processing of bismuth-layer structured ferroelectric ceramics yielding highly textured microstructures. J Eur Ceram Soc 2006, 26: 3233-3239.
YM Kan, PL Wang, T Xu, et al. Spark plasma sintering of bismuth titanate ceramics. J Am Ceram Soc 2005, 88: 1631-1633.
XM Chen, YW Liao, HP Wang, et al. Phase structure and electric properties of Bi0.5(Na0.825K0.175)0.5TiO3 ceramics prepared by a sol-gel method. J Alloys Compd 2010, 493: 368-371.
D Pérez-Mezcua, ML Calzada, I Bretos, et al. Influence of excesses of volatile elements on structure and composition of solution derived lead-free (Bi0.50Na0.50)1-xBaxTiO3 thin films. J Eur Ceram Soc 2016, 36: 89-100.
J Rodríguez-Carvajal. Recent advances in magnetic structure determination by neutron powder diffraction. Phys B: Condens Matter 1993, 192: 55-69.
G Herrera-Pérez, I Castillo-Sandoval, O Solís-Canto, et al. Local piezo-response for lead-free Ba0.9Ca0.1Ti0.9Zr0.1O3 electro-ceramic by switching spectroscopy. Mat Res 2018, 21: e20170605.
J Kreisel, AM Glazer, P Bouvier, et al. High-pressure Raman study of a relaxor ferroelectric: The Na0.5Bi0.5TiO3 perovskite. Phys Rev B 2001, 63: 174106.
ME Montero-Cabrera, L Pardo, A García, et al. The global and local symmetries of nanostructured ferroelectric relaxor 0.94(Bi0.5Na0.5)TiO3-0.06BaTiO3. Ferroelectrics 2014, 469: 50-60.
GO Jones, PA Thomas. Investigation of the structure and phase transitions in the novel A-site substituted distorted perovskite compound Na0.5Bi0.5TiO3. Acta Crystallogr Sect B 2002, 58: 168-178.
GO Jones, J Kreisel, PA Thomas. A structural study of the (Na1-xKx)0.5Bi0.5TiO3 perovskite series as a function of substitution (x) and temperature. Powder Diffr 2002, 17: 301-319.
MI Aroyo, A Kirov, C Capillas, et al. Bilbao crystallographic server. II. Representations of crystallographic point groups and space groups. Acta Cryst Sect A 2006, 62: 115-128.
E Kroumova, MI Aroyo, JM Perez-Mato, et al. Bilbao crystallographic server: Useful databases and tools for phase-transition studies. Phase Transitions 2003, 76: 155-170.
J Wang, Z Zhou, J Xue. Phase transition, ferroelectric behaviors and domain structures of (Na1/2Bi1/2)1−xTiPbxO3 thin films. Acta Mater 2006, 54: 1691-1698.
A Prado-Espinosa, J Camargo, A del Campo, et al. Exploring new methodologies for the identification of the morphotropic phase boundary region in the (BiNa)TiO3-BaTiO3 lead free piezoceramics: Confocal Raman microscopy. J Alloys Compd 2018, 739: 799-805.
D Rout, KS Moon, VS Rao, et al. Study of the morphotropic phase boundary in the lead-free Na1/2Bi1/2TiO3-BaTiO3 system by Raman spectroscopy. J Ceram Soc Jpn 2009, 117: 797-800.
L Ramajo, J Camargo, F Rubio-Marcos, et al. Influences of secondary phases on ferroelectric properties of Bi(Na,K)TiO3 ceramics. Ceram Int 2015, 41: 5380-5386.
L Ramajo, M Castro, F Rubio-Marcos, et al. Influence of MoO3 on electrical and microstructural properties of (K0.44Na0.52Li0.04)(Nb0.86Ta0.10Sb0.04)O3. J Mater Sci: Mater Electron 2013, 24: 3587-3593.
A Gruverman, A Kholkin. Nanoscale ferroelectrics: Processing, characterization and future trends. Rep Prog Phys 2006, 69: 2443-2474.
P Bharathi, P Thomas, KBR Varma. Piezoelectric properties of individual nanocrystallites of Ba0.85Ca0.15Zr0.1Ti0.9O3 obtained by oxalate precursor route. J Mater Chem C 2015, 3: 4762-4770.
CJ Howard, EH Kisi. Preferred orientation in Debye-Scherrer geometry: Interpretation of the March coefficient. J Appl Cryst 2000, 33: 1434-1435.
E Zolotoyabko. Fast quantitative analysis of strong uniaxial texture using a March-Dollase approach. J Appl Cryst 2013, 46: 1877-1879.
H Camacho-Montes, PE García-Casillas, R Rodríguez-Ramos, et al. Simulation of the stress-assisted densification behavior of a powder compact: Effect of constitutive laws. J Am Ceram Soc 2008, 91: 836-845.
A Ayrikyan, O Prach, NH Khansur, et al. Investigation of residual stress in lead-free BNT-based ceramic/ceramic composites. Acta Mater 2018, 148: 432-441.
Journal of Advanced Ceramics
Pages 278-288
Cite this article:
HERNANDEZ-CUEVAS G, LEYVA MENDOZA JR, GARCÍA-CASILLAS PE, et al. Effect of the sintering technique on the ferroelectric and d33 piezoelectric coefficients of Bi0.5(Na0.84K0.16)0.5TiO3 ceramic. Journal of Advanced Ceramics, 2019, 8(2): 278-288.








Web of Science






Received: 24 September 2018
Revised: 13 December 2018
Accepted: 03 January 2019
Published: 13 June 2019
© The author(s) 2019

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made.

The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.

To view a copy of this licence, visit