320
Views
20
Downloads
19
Crossref
N/A
WoS
19
Scopus
0
CSCD
It has well known that hydroxyapatite (HA) is a kind of excellent materials for biomolecular absorption and separation, and the absorption and separation performances of HA would be improved if HA had been processed into desirable porous structures. In this paper, we reported on the combination of gel casting and freeze casting to develop the through-porous hydroxyapatite ceramic monoliths. Experiments demonstrated that the gel-containing freeze casting technique was an isotropic pore-forming technique and could prepare the near-net-shape forming green bodies with good mechanical strength no matter what the HA content in green bodies was. Further green body sintering formed the through-porous ceramics whose grain size, pore size, and porosity depended on and could be controlled by the content of HA in green bodies. The formation of through-pores in ceramics resulted from the gels and water in green bodies, which acted as the templates of the pores with size < 1 µm and the pores with size > 1 µm, respectively. The gel-freeze casting technique is simple, repeatable, and cost-effective, therefore being hopeful for industrial applications.
It has well known that hydroxyapatite (HA) is a kind of excellent materials for biomolecular absorption and separation, and the absorption and separation performances of HA would be improved if HA had been processed into desirable porous structures. In this paper, we reported on the combination of gel casting and freeze casting to develop the through-porous hydroxyapatite ceramic monoliths. Experiments demonstrated that the gel-containing freeze casting technique was an isotropic pore-forming technique and could prepare the near-net-shape forming green bodies with good mechanical strength no matter what the HA content in green bodies was. Further green body sintering formed the through-porous ceramics whose grain size, pore size, and porosity depended on and could be controlled by the content of HA in green bodies. The formation of through-pores in ceramics resulted from the gels and water in green bodies, which acted as the templates of the pores with size < 1 µm and the pores with size > 1 µm, respectively. The gel-freeze casting technique is simple, repeatable, and cost-effective, therefore being hopeful for industrial applications.
This work was supported by the National Natural Science Foundation of China (Grant No. 31570977).
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made.
The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.
To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.