564
Views
19
Downloads
28
Crossref
N/A
WoS
32
Scopus
0
CSCD
For the wide application as thermal protection materials, it is very necessary for mullite ceramics to improve fracture toughness. In this paper, the laminated and stitched carbon fiber cloth preform reinforced mullite (C/mullite) composites were prepared through the route of sol impregnation and heat treatment using the Al2O3-SiO2 sol with a high solid content as raw materials. The C/mullite composites showed a flexural strength of 228.9 MPa that was comparable to that of dense monolithic mullite although the total porosity reached 13.4%. Especially, a fracture toughness of 11.2 MPa·m1/2 that was 4-5 times that of dense monolithic mullite was obtained. Strength deterioration due to the carbothermal reduction between carbon fiber and the residual SiO2 in matrix was found above 1200 ℃. A pyrolytic C (PyC) coating was deposited on carbon fibers as interfacial coating. The chemical damage to carbon fibers was obviously alleviated by the sacrifice of PyC coating. Accordingly, the C/PyC/mullite composites kept strength unchanged up to 1500 ℃, and showed much higher strength retention ratio than C/mullite composites after annealing at 1600 ℃.
For the wide application as thermal protection materials, it is very necessary for mullite ceramics to improve fracture toughness. In this paper, the laminated and stitched carbon fiber cloth preform reinforced mullite (C/mullite) composites were prepared through the route of sol impregnation and heat treatment using the Al2O3-SiO2 sol with a high solid content as raw materials. The C/mullite composites showed a flexural strength of 228.9 MPa that was comparable to that of dense monolithic mullite although the total porosity reached 13.4%. Especially, a fracture toughness of 11.2 MPa·m1/2 that was 4-5 times that of dense monolithic mullite was obtained. Strength deterioration due to the carbothermal reduction between carbon fiber and the residual SiO2 in matrix was found above 1200 ℃. A pyrolytic C (PyC) coating was deposited on carbon fibers as interfacial coating. The chemical damage to carbon fibers was obviously alleviated by the sacrifice of PyC coating. Accordingly, the C/PyC/mullite composites kept strength unchanged up to 1500 ℃, and showed much higher strength retention ratio than C/mullite composites after annealing at 1600 ℃.
This work was supported by the Open Foundation of Science and Technology on Thermostructural Composite Materials Laboratory (Grant No. 614291102010117), the Science Innovation Foundation of Shanghai Academy of Spaceflight Technology (Grant No. SAST2015043), and the National Natural Science Foundation of China (Grant No. 11572277).
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made.
The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.
To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.