591
Views
20
Downloads
18
Crossref
N/A
WoS
18
Scopus
0
CSCD
Bulk Si2BC3N ceramics were reinforced with SiC coated multi-walled carbon nanotubes (MWCNTs). The phase compositions, mechanical properties, and thermal shock resistance, as well as the oxidation resistance of the designed Si2BC3N ceramics were comparatively investigated. The results show that nano SiC coating can be formed on MWCNTs through pyrolyzing polysilazane, which improves the oxidation resistance of MWCNTs. A stronger chemical bonding is formed between the SiC coated MWCNTs and SiC particles, contributing to improved flexural strength (532.1 MPa) and fracture toughness (6.66 MPa·m1/2). Besides, the 2 vol% SiC coated MWCNTs reinforced Si2BC3N ceramics maintains much higher residual strength (193.0 MPa) after thermal shock test at 1000 ℃. The enhanced properties should be attributed to: (1) the breaking of MWCNTs and the debonding between MWCNTs and SiC interfaces, which leads to more energy dissipation; (2) the rough surfaces of SiC coated MWCNTs increase the adhesion strength during the "pull out" of MWCNTs.
Bulk Si2BC3N ceramics were reinforced with SiC coated multi-walled carbon nanotubes (MWCNTs). The phase compositions, mechanical properties, and thermal shock resistance, as well as the oxidation resistance of the designed Si2BC3N ceramics were comparatively investigated. The results show that nano SiC coating can be formed on MWCNTs through pyrolyzing polysilazane, which improves the oxidation resistance of MWCNTs. A stronger chemical bonding is formed between the SiC coated MWCNTs and SiC particles, contributing to improved flexural strength (532.1 MPa) and fracture toughness (6.66 MPa·m1/2). Besides, the 2 vol% SiC coated MWCNTs reinforced Si2BC3N ceramics maintains much higher residual strength (193.0 MPa) after thermal shock test at 1000 ℃. The enhanced properties should be attributed to: (1) the breaking of MWCNTs and the debonding between MWCNTs and SiC interfaces, which leads to more energy dissipation; (2) the rough surfaces of SiC coated MWCNTs increase the adhesion strength during the "pull out" of MWCNTs.
This work was supported financially by National Natural Science Foundation of China (NSFC, Grant Nos. 51702065 and 51621091) and China Postdoctoral Science Foundation (Grant No. 2018M631924).
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made.
The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.
To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.