Abstract
Co-precipitation method and conventional solid-state reaction technique were used to synthesize BaSnO3 nanoparticles and (BaSnO3)x/Bi1.6Pb0.4Sr2Ca2Cu3O10+δ (0 ≤ x ≤ 1.50 wt%) samples, respectively. X-ray powder diffraction (XRD), scanning electron microscopy (SEM), and electrical resistivity data were used to characterize BiPb-2223 phase added by BaSnO3 nanoparticles. The relative volume fraction and superconducting transition temperature Tc of BiPb-2223 phase were enhanced by increasing BaSnO3 addition up to 0.50 wt%. These parameters were decreased with further increase of x. The resistive transition broadening under different applied DC magnetic fields (0.29-4.40 kG) was analyzed through thermally activated flux creep (TAFC) model and Ambegaokar-Halperin (AH) theory. Improvements of the derived flux pinning energy U, critical current density Jc (0) estimated from AH parameter C(B), and upper critical magnetic field