332
Views
11
Downloads
31
Crossref
N/A
WoS
35
Scopus
3
CSCD
Highly pure and dense Ti2AlC and Ti2AlSn0.2C bulks were prepared by hot pressing with molar ratios of 1:1.1:0.9 and 1:0.9:0.2:0.85, respectively, at 1450 ℃ for 30 min with 28 MPa in Ar atmosphere. The phase compositions were investigated by X-ray diffraction (XRD); the surface morphology and topography of the crystal grains were also analyzed by scanning electron microscopy (SEM). The flexural strengths of Ti2AlC and Ti2AlSn0.2C have been measured as 430 and 410 MPa, respectively. Both Vickers hardness decreased slowly as the load increased. The tribological behavior was investigated by dry sliding a low-carbon steel under normal load of 20-80 N and sliding speed of 10-30 m/s. Ti2AlC bulk has a friction coefficient of 0.3-0.45 and a wear rate of (1.64-2.97)×10-6 mm3/(N·m), while Ti2AlSn0.2C bulk has a friction coefficient of 0.25-0.35 and a wear rate of (2.5-4.31)×10-6 mm3/(N·m). The influences of Sn incorporation on the microstructure and properties of Ti2AlC have also been discussed.
Highly pure and dense Ti2AlC and Ti2AlSn0.2C bulks were prepared by hot pressing with molar ratios of 1:1.1:0.9 and 1:0.9:0.2:0.85, respectively, at 1450 ℃ for 30 min with 28 MPa in Ar atmosphere. The phase compositions were investigated by X-ray diffraction (XRD); the surface morphology and topography of the crystal grains were also analyzed by scanning electron microscopy (SEM). The flexural strengths of Ti2AlC and Ti2AlSn0.2C have been measured as 430 and 410 MPa, respectively. Both Vickers hardness decreased slowly as the load increased. The tribological behavior was investigated by dry sliding a low-carbon steel under normal load of 20-80 N and sliding speed of 10-30 m/s. Ti2AlC bulk has a friction coefficient of 0.3-0.45 and a wear rate of (1.64-2.97)×10-6 mm3/(N·m), while Ti2AlSn0.2C bulk has a friction coefficient of 0.25-0.35 and a wear rate of (2.5-4.31)×10-6 mm3/(N·m). The influences of Sn incorporation on the microstructure and properties of Ti2AlC have also been discussed.
This work was supported by the Fundamental Research Funds for the Central Universities (Nos. 2016YJS122 and 2014JBZ015), the National Natural Science Foundation of China (NSFC, Nos. 51301013 and 51572017), and the Beijing Government Funds for the Constructive Project of Central Universities.
Open Access The articles published in this journal are distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons. org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.