369
Views
30
Downloads
27
Crossref
N/A
WoS
28
Scopus
0
CSCD
Different from the oxidation kinetics of other nitrides, the oxide layer on AlN can easily reach tens of micrometers at a temperature above 1200 ℃. In the present study, the oxidation mechanism of AlN is investigated through microstructure observation. The analysis indicates that the oxide layer is full of small pores. The formation of pores generates additional surface area to induce further reaction. The reaction thus controls the oxidation in the temperature range from 1050 to 1350 ℃. The oxidation rate becomes slow as the oxide layer reaches a critical thickness.
Different from the oxidation kinetics of other nitrides, the oxide layer on AlN can easily reach tens of micrometers at a temperature above 1200 ℃. In the present study, the oxidation mechanism of AlN is investigated through microstructure observation. The analysis indicates that the oxide layer is full of small pores. The formation of pores generates additional surface area to induce further reaction. The reaction thus controls the oxidation in the temperature range from 1050 to 1350 ℃. The oxidation rate becomes slow as the oxide layer reaches a critical thickness.
The present study was supported by the “Ministry of Science and Technology” through the Contract No. NSC100-3113-E-002-001.
Open Access The articles published in this journal are distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons. org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.