586
Views
30
Downloads
24
Crossref
N/A
WoS
26
Scopus
7
CSCD
A series of asymmetric cordierite ceramics with hierarchical porous structure were prepared and characterized. The macroporous support was obtained from natural raw materials (bauxite, silica sand, kaolinite, talc, and alumina) via ceramic technology. The prepared ceramic discs were characterized by a narrow pore size distribution. The average pore size was about 9.5 µm, and the open porosity was estimated to be 30%. Coating the discs with micro/mesoporous cordierite layer was performed using the sol–gel approach. Three-component sols were obtained from organic or inorganic precursors. Corresponding gels were calcined at 1200 ℃ to form the cordierite structure. The nature of precursor was found to affect the pore volume distribution. Narrow pore volume distribution was observed when organic precursors were used. Another key factor to control the parameters of final material was the drying condition. Supercritical drying of the gels has allowed us to increase the surface area in two orders of magnitude comparing with conventional drying procedure.
A series of asymmetric cordierite ceramics with hierarchical porous structure were prepared and characterized. The macroporous support was obtained from natural raw materials (bauxite, silica sand, kaolinite, talc, and alumina) via ceramic technology. The prepared ceramic discs were characterized by a narrow pore size distribution. The average pore size was about 9.5 µm, and the open porosity was estimated to be 30%. Coating the discs with micro/mesoporous cordierite layer was performed using the sol–gel approach. Three-component sols were obtained from organic or inorganic precursors. Corresponding gels were calcined at 1200 ℃ to form the cordierite structure. The nature of precursor was found to affect the pore volume distribution. Narrow pore volume distribution was observed when organic precursors were used. Another key factor to control the parameters of final material was the drying condition. Supercritical drying of the gels has allowed us to increase the surface area in two orders of magnitude comparing with conventional drying procedure.
Elena F. Krivoshapkina appreciates the financial support of the Russian Foundation of Basic Research (Grant 16-38-00193 mol_a). Aleksey A. Vedyagin is grateful to the Russian Academy of Sciences and Federal Agency of Scientific Organizations for financial support (Project No. 0303-2016-0014). Most of the characterization experiments were provided using the equipment of Center for Collective Use “Khimiya” (Institute of Chemistry of Komi Scientific Centre UB RAS).
Open Access The articles published in this journal are distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons. org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.