542
Views
27
Downloads
16
Crossref
N/A
WoS
21
Scopus
2
CSCD
Ultra-large zirconia toughened alumina (ZTA, mass ratio of Al2O3 and ZrO2 is 78:22) ceramics with eccentric circle shape were successfully sintered by microwave sintering with a multi-mode cavity at 2.45 GHz. The dimension of ZTA ceramics (green body) is 165 mm (outer diameter) × 25 mm (thickness). The optimized sintering temperature of microwave sintering is about 1500 ℃ for 30 min, and the total sintering time is about 4 h which is much shorter than that of conventional sintering. An auxiliary-heating insulation device was designed based on the principle of local caloric compensation to guarantee the intact sintered samples. With the increasing of sintering temperature, more and more microwave energy is absorbed within the entire sample, volumetric densification performs, and phases shift from m-ZrO2 phase to t-ZrO2 phase and cause Al2O3 grain growth.
Ultra-large zirconia toughened alumina (ZTA, mass ratio of Al2O3 and ZrO2 is 78:22) ceramics with eccentric circle shape were successfully sintered by microwave sintering with a multi-mode cavity at 2.45 GHz. The dimension of ZTA ceramics (green body) is 165 mm (outer diameter) × 25 mm (thickness). The optimized sintering temperature of microwave sintering is about 1500 ℃ for 30 min, and the total sintering time is about 4 h which is much shorter than that of conventional sintering. An auxiliary-heating insulation device was designed based on the principle of local caloric compensation to guarantee the intact sintered samples. With the increasing of sintering temperature, more and more microwave energy is absorbed within the entire sample, volumetric densification performs, and phases shift from m-ZrO2 phase to t-ZrO2 phase and cause Al2O3 grain growth.
This work was sponsored by the National Natural Science Foundation of China (NSFC, No. 51172113).
Open Access The articles published in this journal are distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons. org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.