292
Views
11
Downloads
18
Crossref
N/A
WoS
19
Scopus
0
CSCD
A hierarchical structural surface of TiO2 film with reversibly light-switchable wettability between superhydrophobicity and superhydrophilicity on metal substrate was fabricated through simply dip-coating method from TiO2 precursor solution containing TiO2 nanoparticles with the average diameter 25 nm (P25), followed by heat-treatment and modification with fluoroalkylsilane (FAS) molecules. The morphology, phase and crystallographic structure, and chemical composite of the as-prepared TiO2 film were characterized by scanning electron microscopy (SEM), X-ray diffraction (XRD), and X-ray photoelectron spectroscopy (XPS). The wettability of TiO2 film was characterized by a drop shape analyzer. The water contact angle of superhydrophobic TiO2 film was up to 165.6°. Under UV irradiation, the water contact angle decreased and the superhydrophobic TiO2 film became superhydrophilic because of hydroxyl groups absorption on the TiO2 surface. Meanwhile, the surface morphology of TiO2 film, which resulted from the TiO2 nanoparticles added in TiO2 precursor solution, had a significant effect on the wettability conversion of TiO2 film and enhanced the switch from hydrophobicity to hydrophilicity. The wettability could be reversibly switched between superhydrophobicity and superhydrophilicity via alternation of UV exposure and dark storage.
A hierarchical structural surface of TiO2 film with reversibly light-switchable wettability between superhydrophobicity and superhydrophilicity on metal substrate was fabricated through simply dip-coating method from TiO2 precursor solution containing TiO2 nanoparticles with the average diameter 25 nm (P25), followed by heat-treatment and modification with fluoroalkylsilane (FAS) molecules. The morphology, phase and crystallographic structure, and chemical composite of the as-prepared TiO2 film were characterized by scanning electron microscopy (SEM), X-ray diffraction (XRD), and X-ray photoelectron spectroscopy (XPS). The wettability of TiO2 film was characterized by a drop shape analyzer. The water contact angle of superhydrophobic TiO2 film was up to 165.6°. Under UV irradiation, the water contact angle decreased and the superhydrophobic TiO2 film became superhydrophilic because of hydroxyl groups absorption on the TiO2 surface. Meanwhile, the surface morphology of TiO2 film, which resulted from the TiO2 nanoparticles added in TiO2 precursor solution, had a significant effect on the wettability conversion of TiO2 film and enhanced the switch from hydrophobicity to hydrophilicity. The wettability could be reversibly switched between superhydrophobicity and superhydrophilicity via alternation of UV exposure and dark storage.
This work was supported by National Natural Science Foundation of China (No. 21201115), State Key Laboratory of New Ceramics and Fine Processing, Tsinghua University (No. KF201614), and Technology Foundation for Selected Overseas Chinese Scholar of Shaanxi Province of China.
Open Access The articles published in this journal are distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons. org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.