339
Views
10
Downloads
7
Crossref
N/A
WoS
9
Scopus
0
CSCD
Alkoxysilane precursors are the most widely used silica source for sol–gel preparation of silicate-based bioactive glass. However, due to their high cost, alternative sources such as bentonite clay are desirable. In the present work, bentonite clay was reacted with sodium hydroxide (NaOH) to extract sodium metasilicate (Na2SiO3). The obtained Na2SiO3 was converted to gel which was then sintered at 950 ℃ for 3 h to give the bioactive glass in the quaternary composition SiO2–NaO–CaO– P2O5. The resulting glass was incubated in simulated body fluid (SBF) for 0–7 days to evaluate the bioactivity. Furthermore, glass samples were characterized before and after SBF study by scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDX), X-ray diffraction (XRD), and Fourier transform infrared spectroscopy (FTIR). Results obtained showed the presence of Na2Ca2Si3O9 (combeite) crystal as the major crystalline phase and the formation of hydroxyapatite (HA) and hydroxycarbonated apatite (HCA) on the surface of the glass after immersion in SBF. The material showed potentials for application as scaffold in bone tissue repair.
Alkoxysilane precursors are the most widely used silica source for sol–gel preparation of silicate-based bioactive glass. However, due to their high cost, alternative sources such as bentonite clay are desirable. In the present work, bentonite clay was reacted with sodium hydroxide (NaOH) to extract sodium metasilicate (Na2SiO3). The obtained Na2SiO3 was converted to gel which was then sintered at 950 ℃ for 3 h to give the bioactive glass in the quaternary composition SiO2–NaO–CaO– P2O5. The resulting glass was incubated in simulated body fluid (SBF) for 0–7 days to evaluate the bioactivity. Furthermore, glass samples were characterized before and after SBF study by scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDX), X-ray diffraction (XRD), and Fourier transform infrared spectroscopy (FTIR). Results obtained showed the presence of Na2Ca2Si3O9 (combeite) crystal as the major crystalline phase and the formation of hydroxyapatite (HA) and hydroxycarbonated apatite (HCA) on the surface of the glass after immersion in SBF. The material showed potentials for application as scaffold in bone tissue repair.
The authors are thankful to Mr. Femi Igbari of the College of NanoScience and Technology, Soochow University, China, for his assistance with the EDX and XRD characterisations as well as Mr. Isa Yakubu of Ahmadu Bello University Zaria for the SEM analysis.
Open Access The articles published in this journal are distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/ by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.