AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
PDF (1.2 MB)
Collect
Submit Manuscript AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article | Open Access

Influence of variables on the synthesis of CoFe2O4 pigment by the complex polymerization method

P. N. MEDEIROSa( )Y. F. GOMESaM. R. D. BOMIOaI. M. G. SANTOSbM. R. S. SILVAbC. A. PASKOCIMASaM. S. LIcF. V. MOTTAa
Department of Materials Engineering, Federal University of Rio Grande do Norte, Campus Lagoa Nova, CEP 59078-900-Natal/RN, Brazil
Department of Chemistry, Federal University of Paraíba, Cidade Universitária, CEP 58051-900-João Pessoa/PB, Brazi
Institute Physics of São Carlos, USP, CEP 13566-590, São Carlos, São Paulo, Brazil
Show Author Information

Abstract

Synthetic inorganic pigments are most widely used in ceramic applications due to their excellent chemical and thermal stability and their lower toxicity to both human and environment as well. In the present work, black ceramic pigment CoFe2O4 has been synthesized by the complex polymerization method (CPM) with good chemical homogeneity. In order to study the influence of variables on the process of obtaining pigment through CPM, 2(5-2) fractional factorial design with resolution III was used. The variables studied in the mathematical modeling were: citric acid/metal concentration, pre-calcination time, calcination temperature, calcination time, and calcination rate. Powder pigments were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), and UV–visible (UV–Vis) spectroscopy. Based on the results, the formation of cobalt ferrite phase (CoFe2O4) with spinel structure was verified. The color of pigments obtained showed dark shades, from black to gray. The model adjusted to the conditions proposed in this study due to the determination coefficient of 99.9% and variance (R²) showed that all factors are significant at the confidence level of 95%.

References

[1]
Cunha JD, Melo DMA, Martinelli AE, et al. Ceramic pigment obtained by polymeric precursors. Dyes Pigments 2005, 65:11-14.
[2]
Gorodylova N, Kosinová V, Dohnalová Ž, et al. New purple-blue ceramic pigments based on CoZr4 (PO4)6. Dyes Pigments 2013, 98:393-404.
[3]
Monrós G. Pigment, Ceramic, Encyclopedia of Color Science and Technology. Springer, 2014.
[4]
Escardino A, Mestre S, Barba A, et al. Kinetic study of black Fe2O3–Cr2O3 pigment synthesis: I, influence of synthesis time and temperature. J Am Ceram Soc 2003, 86:945-950.
[5]
Zaichuk AV, Belyi YI. Black ceramic pigments based on open-hearth slag. Glass Ceram+ 2012, 69:99-103.
[6]
Costa G, Della VP, Ribeiro MJ, et al. Synthesis of black ceramic pigments from secondary raw materials. Dyes Pigments 2008, 77:137-144.
[7]
Hajjaji W, Seabra MP, Labrincha JA. Evaluation of metal-ions containing sludges in the preparation of black inorganic pigments. J Hazard Mater 2011, 185:619-625.
[8]
Maslennikova GN. Pigments of the spinel type. Glass Ceram+ 2001, 58:216-220.
[9]
Mestre S, Palacios MD, Agut P. Solution combustion synthesis of (Co,Fe)Cr2O4 pigments. J Eur Ceram Soc 2012, 32:1995-1999.
[10]
Yüngevis H, Ozel E. Effect of the milling process on the properties of CoFe2O4 pigment. Ceram Int 2013, 39:5503-5511.
[11]
Liu X-M, Fu S-Y, Xiao H-M, et al. Synthesis of nanocrystalline spinel CoFe2O4 via a polymer-pyrolysis route. Physica B 2005, 370:14-21.
[12]
Cavalcante PMT, Dondi M, Guarini G, et al. Colour performance of ceramic nano-pigments. Dyes Pigments 2009, 80:226-232.
[13]
Jia Z, Ren D, Zhu R. Synthesis, characterization and magnetic properties of CoFe2O4 nanorods. Mater Lett 2012, 66:128-131.
[14]
Costa G, Ribeiro MJ, Hajjaji W, et al. Ni-doped hibonite (CaAl12O19): A new turquoise blue ceramic pigment. J Eur Ceram Soc 2009, 29:2671-2678.
[15]
Gargori C, Cerro S, Galindo R, et al. New vanadium doped calcium titanate ceramic pigment. Ceram Int 2011, 37:3665-3670.
[16]
Llusar M, Zielinska A, Tena MA, et al. Blue-violet ceramic pigments based on Co and Mg Co2−xMgxP2O7 diphosphates. J Eur Ceram Soc 2010, 30:1887-1896.
[17]
Ricceri R, Ardizzone S, Baldi G, et al. Ceramic pigments obtained by sol–gel techniques and by mechanochemical insertion of color centers in Al2O3 host matrix. J Eur Ceram Soc 2002, 22:629-637.
[18]
Melo D, Vieira FTG, Costa TCC, et al. Lanthanum cobaltite black pigments with perovskite structure. Dyes Pigments 2013, 98:459-463.
[19]
Blosi M, Albonetti S, Gatti F, et al. Au–Ag nanoparticles as red pigment in ceramic inks for digital decoration. Dyes Pigments 2012, 94:355-362.
[20]
Kakihana M. Invited review “sol–gel” preparation of high temperature superconducting oxides. J Sol–Gel Sci Technol 1996, 6:7-55.
[21]
Bernardi MIB, De Vicente FS, Li MS, et al. Colored films produced by electron beam deposition from nanometric TiO2 and Al2O3 pigment powders obtained by modified polymeric precursor method. Dyes Pigments 2007, 75:693-700.
[22]
Cho W-S, Kakihana M. Crystallization of ceramic pigment CoAl2O4 nanocrystals from Co–Al metal organic precursor. J Alloys Compd 1999, 287:87-90.
[23]
Razpotnik T, Maček J. Synthesis of nickel oxide/zirconia powders via a modified Pechini method. J Eur Ceram Soc 2007, 27:1405-1410.
[24]
Mariappan CR, Galven C, Crosnier-Lopez M-P, et al. Synthesis of nanostructured LiTi2(PO4)3 powder by a Pechini-type polymerizable complex method. J Solid State Chem 2006, 179:450-456.
[25]
Vieira FTG, Melo DS, de Lima SJG, et al. The influence of temperature on the color of TiO2:Cr pigments. Mater Res Bull 2009, 44:1086-1092.
[26]
Chai Y-L, Chang Y-S, Chen G-J, et al. The effects of heat-treatment on the structure evolution and crystallinity of ZnTiO3 nano-crystals prepared by Pechini process. Mater Res Bull 2008, 43:1066-1073.
[27]
Mohammadia MR, Fray DJ. Low temperature nanostructured zinc titanate by an aqueous particulate sol–gel route: Optimisation of heat treatment condition based on Zn:Ti molar ratio. J Eur Ceram Soc 2010, 30:947-961.
[28]
Box GEP, Hunter WG, Hunter JS. Statistic for Experiments: Design, Innovation, and Discovery, 2nd edn. New York:Wiley, 2005.
[29]
Rautio J, Perämäki P, Honkamo J, et al. Effect of synthesis method variables on particle size in the preparation of homogeneous doped nano ZnO material. Microchem J 2009, 91:272-276.
[30]
Rosario AV, Pereira EC. Comparison of the electrochemical behavior of CeO2–SnO2 and CeO2–TiO2 electrodes produced by the Pechini method. Thin Solid Films 2002, 410:1-7.
[31]
Maran JP, Manikandan S. Response surface modeling and optimization of process parameters for aqueous extraction of pigments from prickly pear (Opuntia ficus-indica) fruit. Dyes Pigments 2012, 95:465-472.
[32]
Mason RL, Gunst RF, Hess JL. Statistical Design and Analysis of Experiments: With Aplications to Engineering and Science, 2nd edn. New Jersey:John Wiley & Sons, 2003.
[33]
Sánchez MYH, Baena OJR. Síntesis y caracterización colorimétrica de un pigmento negro tipo espinela. CONAMET/SAM-2008.
[34]
Shen L, Qiao Y, Guo Y, et al. Preparation of nanometer-sized black iron oxide pigment by recycling of blast furnace flue dust. J Hazard Mater 2010, 177:495-500.
[35]
Sajjia M, Oubaha M, Prescott T, et al. Development of cobalt ferrite powder preparation employing the sol–gel technique and its structural characterization. J Alloys Compd 2010, 506:400-406.
[36]
Verma KC, Singh VP, Ram M, et al. Structural, microstructural and magnetic properties of NiFe2O4, CoFe2O4 and MnFe2O4 nanoferrite thin films. J Magn Magn Mater 2011, 323:3271-3275.
[37]
Airimioaei M, Ciomaga CE, Apostolescu N, et al. Synthesis and functional properties of the Ni1−xMnxFe2O4 ferrites. J Alloys Compd 2011, 509:8065-8072.
[38]
Lavela P, Tirado JL. CoFe2O4 and NiFe2O4 synthesized by sol–gel procedures for their use as anode materials for Li ion batteries. J Power Sources 2007, 172:379-387.
[39]
Simões AZ, Riccardi CS, Dos Santos ML, et al. Effect of annealing atmosphere on phase formation and electrical characteristics of bismuth ferrite thin films. Mater Res Bull 2009, 44:1747-1752.
[40]
Gimenes R, Baldissera MR, da Silva MRA, et al. Structural and magnetic characterization of MnxZn1-xFe2O4 (x = 0.2; 0.35; 0.65; 0.8; 1.0) ferrites obtained by the citrate precursor method. Ceram Int 2012, 38:741-746.
[41]
Popa M, Calderon-Moreno JM. Lanthanum cobaltite nanoparticles using the polymeric precursor method. J Eur Ceram Soc 2009, 29:2281-2287.
[42]
Montgomery DC. Design and Analysis of Experiments, 5th edn. New York:Wiley, 2001.
Journal of Advanced Ceramics
Pages 135-141
Cite this article:
MEDEIROS PN, GOMES YF, BOMIO MRD, et al. Influence of variables on the synthesis of CoFe2O4 pigment by the complex polymerization method. Journal of Advanced Ceramics, 2015, 4(2): 135-141. https://doi.org/10.1007/s40145-015-0145-1

813

Views

15

Downloads

20

Crossref

N/A

Web of Science

19

Scopus

1

CSCD

Altmetrics

Received: 27 October 2014
Revised: 08 February 2015
Accepted: 09 February 2015
Published: 30 May 2015
© The author(s) 2015

Open Access: This article is distributed under the terms of the Creative Commons Attribution License which permits any use, distribution, and reproduction in any medium, provided the original author(s) and the source are credited.

Return