AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
View PDF
Submit Manuscript AI Chat Paper
Show Outline
Show full outline
Hide outline
Show full outline
Hide outline
Research Article | Open Access

Strong emissions of blue–yellow–red regions of La and Ti modified KNaNbO3 ferroelectric ceramics

Departamento de Física Aplicada, Instituto de Cibernética, Matemática y Física, CITMA, 15 # 551, Vedado, La Habana, CP 10400, Cuba
Facultad de Física, Universidad de La Habana, San Lázaro y L, Vedado, La Habana, CP 10400, Cuba
CINVESTAV-Unidad Querétaro, IPN, Libramiento Norponiente 2000, Fracc. Real de Juriquilla, CP 76230, Querétaro, México
Centro de Investigaciones en Ciencias de la Tierra y Materiales, Universidad Autónoma del Estado de Hidalgo, México
Show Author Information


In this work, the results of the study on the optical properties of the perovskite structure ABO3 with La3+ substitution for ions K+ and Na+ in the A site and Ti4+ substitution for ion Nb5+ in the B site are presented. The ceramics were sintered at 1100 ℃ and 1190 ℃ and formed at 10 MPa and 80 MPa. Dense ceramics were obtained with 94% of the theoretical density. The piezoresponse force microscopy (PFM) showed needle-shaped grains with a size of 30 nm for the samples formed at 10 MPa at both sintering temperatures. Apparently, the high temperature and high pressure used in formation reduced the energy of the band gap (Eg) from 3.36 to 3.09 eV. Strong emissions to 2.19, 1.86, 2.5, and 2.31 eV were obtained by exciting the samples at 325, 373, 457, and 500 nm, respectively; these emissions corresponded to blue–yellow–red regions of the visible spectrum.


Peng D, Sun H, Wang X, et al. Red emission in Pr doped CaBi4Ti4O15 ferroelectric ceramics. Mat Sci Eng B 2011, 176: 1513–1516.
Durruthy-Rodríguez MD, Costa-Marrero J, Hernández-García M, et al. Photoluminescence in “hard” and “soft” ferroelectric ceramics. Appl Phys A 2010, 98: 543–550.
Baedi J, Hosseini SM, Kompany A. The effect of excess titanium and crystal symmetry on electronic properties of Pb(Zr1-xTix)O3 compounds. Comput Mater Sci 2008, 43: 909–916.
Baedi J, Benam MR, Majidiyan M. First-principles study of the effect of La substitution on the electronic and optical properties of Pb(ZrxTi1-x)O3 crystal. Phys Scr 2010, 81: 035701.
Stashans A, Maldonado F. A quantum mechanical study of La-doped Pb(Zr,Ti)O3. Physica B 2007, 392: 237–241.
Anicete-Santos M, Silva MS, Orhan E, et al. Contribution of structural order–disorder to the room temperature photoluminescence of lead zirconate titanate powders. J Lumin 2007, 127: 689–695.
Fuentes J, Portelles J, Pérez A, et al. Structural and dielectric properties of La- and Ti-modified K0.5Na0.5NbO3 ceramics. Appl Phys A 2012, 107: 733–738.
Durruthy-Rodríguez MD, Gervacio-Arciniega JJ, Portelles J, et al. PFM characterization of (K0.5Na0.5)0.95La0.05 (Nb0.9Ti0.05)O2.9 ceramics lead free. Appl Phys A 2013, 113: 515–519.
Kottim G. Reflectance Spectroscopy. New York: Springer Verlag, 1969.
Wendlandt WW, Hecht HG. Reflectance Spectroscopy. New York: Wiley Interscience, 1966.
Klein N, Hollenstein E, Damjanovic D, et al. A study of the phase diagram of (K,Na,Li)NbO3 determined by dielectric and piezoelectric measurements, and Raman spectroscopy. J Appl Phys 2007, 102: 014112.
Kao KC. Dielectric Phenomena in Solids. San Diego, USA: Elsevier Academic Press, 2004.
Yu PY, Cardona M. Fundamentals of Semiconductors: Physics and Materials Properties, 4th edn. New York: Springer, 2010.
Park CH. Microscopic study on migration of oxygen vacancy in ferroelectric perovskite oxide. J Korean Phys Soc 2003, 42: S1420–S1424.
Yao Y. Studies of ferroelectrics films using micro-Raman spectroscopy and photoluminescence measurements. Ph.D. Thesis. Hong Kong: Hong Kong Polytechnic University, 2009.
Journal of Advanced Ceramics
Pages 183-189
Cite this article:
DURRUTHY-RODRÍGUEZ MD, HERNÁNDEZ-GARCÍA M, PORTELLES J, et al. Strong emissions of blue–yellow–red regions of La and Ti modified KNaNbO3 ferroelectric ceramics. Journal of Advanced Ceramics, 2015, 4(3): 183-189.








Web of Science





Received: 23 November 2014
Revised: 26 January 2015
Accepted: 02 February 2015
Published: 04 July 2015
© The author(s) 2015

Open Access: This article is distributed under the terms of the Creative Commons Attribution License which permits any use, distribution, and reproduction in any medium, provided the original author(s) and the source are credited.