Abstract
Two-dimensional (2D) carbide Ti3C2 was synthesized by exfoliating Ti3AlC2 in HF solution and used for supercapacitive performance investigation in 3 M KOH electrolyte. The specific surface area (SSA) of as-synthesized Ti3C2 was 22.35 m2/g. Ti3C2-based supercapacitor electrodes exhibited good energy storage ability and had a volumetric capacitance 119.8 F/cm3 at the current density of 2.5 A/g. Moreover, the addition of carbon black into Ti3C2 powders greatly improved the performance of Ti3C2-based capacitors because carbon black restrained the preferred orientation of 2D Ti3C2, providing fast ion transport channels, and in turn, decreasing electrical resistance from 16.7 Ω to 3.5 Ω.