341
Views
13
Downloads
2
Crossref
N/A
WoS
2
Scopus
0
CSCD
Yttria stabilized zirconia (YSZ) film has been screen printed and sintered on a rigid substrate. The constrained sintering caused the formation of multiple microcracks and most critically large “blister” defects. The morphology of such defects has been characterized by scanning electron microscopy (SEM). It was revealed that the film surface exhibits noticeable roughness. Microhardness testing revealed little variation in green density distribution. Rheological measurement, however, showed that some agglomerations are present in the YSZ ink. The existence of agglomerations in the screen printing ink in combination with debonding at the film/substrate interface is potentially the cause for the formation of blister defects.
Yttria stabilized zirconia (YSZ) film has been screen printed and sintered on a rigid substrate. The constrained sintering caused the formation of multiple microcracks and most critically large “blister” defects. The morphology of such defects has been characterized by scanning electron microscopy (SEM). It was revealed that the film surface exhibits noticeable roughness. Microhardness testing revealed little variation in green density distribution. Rheological measurement, however, showed that some agglomerations are present in the YSZ ink. The existence of agglomerations in the screen printing ink in combination with debonding at the film/substrate interface is potentially the cause for the formation of blister defects.
Open Access: This article is distributed under the terms of the Creative Commons Attribution License which permits any use, distribution, and reproduction in any medium, provided the original author(s) and the source are credited.