Abstract
Mechanical and thermal properties of SiC–porcelain ceramics were studied in the wide SiC content range of 0–95%. Microstructure evolution, shrinkage at sintering, porosity, mechanical strength, elastic modulus, coefficient of thermal expansion (CTE) and thermal conductivity were studied depending on SiC content. The optimal sintering temperature was 1200 ℃, and the maximum mechanical strength corresponded to SiC content of 90%. Parametric evaluation of the ceramic thermal shock resistance revealed its great potential for thermal cycling applications. It was demonstrated that the open-cell foam catalyst supports can be manufactured from SiC–porcelain ceramics by the polyurethane foam replication process.