633
Views
27
Downloads
8
Crossref
N/A
WoS
12
Scopus
0
CSCD
Lead-free (K0.4425Na0.52Li0.0375)(Nb0.8825Sb0.07Ta0.0475)O3 (KNLNST) piezoelectric ceramics are synthesized by the conventional solid-state reaction method. The sintering temperature and poling temperature dependence of ceramic properties are investigated. Previous studies have shown that variation of sintering temperature can cause phase transition, similar to the morphotropic phase boundary (MPB) behavior induced by composition changes in Pb(Zr,Ti)O3 (PZT). And the best piezoelectric performance can be obtained near the phase-transition sintering temperature. In this research, phase transition induced by sintering temperature cannot be detected and excellent piezoelectric properties can still be obtained. The sintering temperature of the largest piezoelectric coefficient of such composition is lower than that of the highest density, which is considered in composition segregation as a result of intensified volatilization of alkali metal oxides. Combined with the effect of poling temperature, the peak values of the piezoelectric properties are d33 = 313 pC/N, kp = 47%, εr = 1825, tanδ = 0.024, To–t = 88 ℃, and TC = 274 ℃.
Lead-free (K0.4425Na0.52Li0.0375)(Nb0.8825Sb0.07Ta0.0475)O3 (KNLNST) piezoelectric ceramics are synthesized by the conventional solid-state reaction method. The sintering temperature and poling temperature dependence of ceramic properties are investigated. Previous studies have shown that variation of sintering temperature can cause phase transition, similar to the morphotropic phase boundary (MPB) behavior induced by composition changes in Pb(Zr,Ti)O3 (PZT). And the best piezoelectric performance can be obtained near the phase-transition sintering temperature. In this research, phase transition induced by sintering temperature cannot be detected and excellent piezoelectric properties can still be obtained. The sintering temperature of the largest piezoelectric coefficient of such composition is lower than that of the highest density, which is considered in composition segregation as a result of intensified volatilization of alkali metal oxides. Combined with the effect of poling temperature, the peak values of the piezoelectric properties are d33 = 313 pC/N, kp = 47%, εr = 1825, tanδ = 0.024, To–t = 88 ℃, and TC = 274 ℃.
This study was supported by the National Natural Science Foundation of China (No. 51172108), and the project funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions.
Open Access: This article is distributed under the terms of the Creative Commons Attribution License which permits any use, distribution, and reproduction in any medium, provided the original author(s) and the source are credited.