424
Views
20
Downloads
6
Crossref
N/A
WoS
9
Scopus
0
CSCD
The electrical characteristics of hybrid super capacitor were evaluated by synthesizing LTO (Li4Ti5O12) using TiO2 having a hydrogen titanate nanowire form. Preparation of the hydrogen titanate nanowire was implemented by using TiO2 having size of 60 nm and NaOH, and performing synthesis at 70 ℃ for 6 h with a sonochemical method. LTO compound was synthesized at 150 ℃ for 36 h and at 180 ℃ for 36 h respectively by using the hydrogen titanate nanowire and LiOH·H2O as starting materials with a hydrothermal method. The final LTO compound was synthesized at 700 ℃ for 6 h using a solid-state method. As a result of manufacturing the hybrid super capacitor using LTO synthesized at 180 ℃ for 36 h with the hydrothermal method, a capacity of 198 mA·h/g has been achieved compared to a theoretical capacity of 172 mA·h/g of existing LTO, and thus, the capacity has been increased by about 13%. Further, such excellent cycle performance has ensured its possibility as a high-capacity capacitor.
The electrical characteristics of hybrid super capacitor were evaluated by synthesizing LTO (Li4Ti5O12) using TiO2 having a hydrogen titanate nanowire form. Preparation of the hydrogen titanate nanowire was implemented by using TiO2 having size of 60 nm and NaOH, and performing synthesis at 70 ℃ for 6 h with a sonochemical method. LTO compound was synthesized at 150 ℃ for 36 h and at 180 ℃ for 36 h respectively by using the hydrogen titanate nanowire and LiOH·H2O as starting materials with a hydrothermal method. The final LTO compound was synthesized at 700 ℃ for 6 h using a solid-state method. As a result of manufacturing the hybrid super capacitor using LTO synthesized at 180 ℃ for 36 h with the hydrothermal method, a capacity of 198 mA·h/g has been achieved compared to a theoretical capacity of 172 mA·h/g of existing LTO, and thus, the capacity has been increased by about 13%. Further, such excellent cycle performance has ensured its possibility as a high-capacity capacitor.
Open Access: This article is distributed under the terms of the Creative Commons Attribution Noncommercial License which permits any noncommercial use, distribution, and reproduction in any medium, provided the original author(s) and source are credited.