Journal Home > Volume 2 , issue 3

In this paper, a simple and cheap method to prepare porous ZnO by using zinc nitrate, ethanol and triethanolamine (TEA) is reported. The as-prepared sample consisted of nano and micro pores. The sample was calcined at 300 ℃, 400 ℃ and 500 ℃ with different heating rates. At 500 ℃, the nano pores disappeared but the sample maintained its micro porosity. Field emission scanning electron microscopy (FE-SEM) pictures confirmed that the size and growth of ZnO nanoparticles depended on the heating conditions. The infrared (IR) absorption peak of Zn–O stretching vibration positioned at 457 cm-1 was split into two peaks centered at 518 cm-1 and 682 cm-1 with the change of morphology. These results confirmed that Fourier transform infrared (FT-IR) spectrum was sensitive to variations in particle size, shape and morphology. The photoluminescence (PL) spectrum of porous ZnO contained five emission peaks at 397 nm, 437 nm, 466 nm, 492 nm and 527 nm. Emission intensity enhanced monotonously with increase of temperature and the change was rapid between temperatures of 300 ℃ and 500 ℃. This was due to the elimination of organic species and improvement in the crystallanity of the sample at 500 ℃.


menu
Abstract
Full text
Outline
About this article

Synthesis and optical characterization of porous ZnO

Show Author's information K. SOWRI BABU*( )A. RAMACHANDRA REDDYCh. SUJATHAK. VENUGOPAL REDDYA. N. MALLIKA
Department of Physics, National Institute of Technology Warangal, Warangal-506 004, Andhra Pradesh, India

Abstract

In this paper, a simple and cheap method to prepare porous ZnO by using zinc nitrate, ethanol and triethanolamine (TEA) is reported. The as-prepared sample consisted of nano and micro pores. The sample was calcined at 300 ℃, 400 ℃ and 500 ℃ with different heating rates. At 500 ℃, the nano pores disappeared but the sample maintained its micro porosity. Field emission scanning electron microscopy (FE-SEM) pictures confirmed that the size and growth of ZnO nanoparticles depended on the heating conditions. The infrared (IR) absorption peak of Zn–O stretching vibration positioned at 457 cm-1 was split into two peaks centered at 518 cm-1 and 682 cm-1 with the change of morphology. These results confirmed that Fourier transform infrared (FT-IR) spectrum was sensitive to variations in particle size, shape and morphology. The photoluminescence (PL) spectrum of porous ZnO contained five emission peaks at 397 nm, 437 nm, 466 nm, 492 nm and 527 nm. Emission intensity enhanced monotonously with increase of temperature and the change was rapid between temperatures of 300 ℃ and 500 ℃. This was due to the elimination of organic species and improvement in the crystallanity of the sample at 500 ℃.

Keywords:

semiconductors, porous ZnO, optical properties
Received: 18 March 2013 Revised: 19 April 2013 Accepted: 03 May 2013 Published: 07 September 2013 Issue date: September 2013
References(19)
[1]
Service RF. Will UV lasers beat the blues? Science 1997, 276: 895.
[2]
Singh AK, Viswanath V, Janu VC. Synthesis, effect of capping agents, structural, optical and photoluminescence properties of ZnO nanoparticles. J Lumin 2009, 129: 874-878.
[3]
Koch U, Fotik A, Weller H, et al. Photochemistry of semiconductor colloids. Preparation of extremely small ZnO particles, fluorescence phenomena and size quantization effects. Chem Phys Lett 1985, 122: 507-510.
[4]
Djurišić AB, Leung YH, Tam KH, et al. Green, yellow, and orange defect emission from ZnO nanostructures: Influence of excitation wavelength. Appl Phys Lett 2006, 88: 103107.
[5]
Jamali-Sheini F. Chemical solution deposition of ZnO nanostructure films: Morphology substrate angle dependency. Ceram Int 2012, 38: 3649-3657.
[6]
Wei A, Sun XW, Xu CX, et al. Growth mechanism of tubular ZnO formed in aqueous solution. Nanotechnology 2006, 17: 1740-1744.
[7]
Wu L, Wu Y, LÜ W. Preparation of ZnO nanorods and optical characterizations. Physica E 2005, 28: 76-82.
[8]
Roy VAL, Djurišić AB, Chan WK, et al. Luminescent and structural properties of ZnO nanorods prepared under different conditions. Appl Phys Lett 2003, 83: 141-143.
[9]
Kılıç B, Gür E, Tüzemen S. Nanoporous ZnO photoelectrode for dye-sensitized solar cell. J Nanomater 2012, .
[10]
Li B, Wang Y. Hierarchically assembled porous ZnO microstructures and applications in a gas sensor. Superlattice Microst 2011, 49: 433-440.
[11]
Jeon SM, Kim MS, Cho MY, et al. Fabrication of porous ZnO nanorods with nano-sized pores and their properties. J Korean Phys Soc 2010, 57: 1477-1481.
[12]
Dai Z, Liu K, Tang Y, et al. A novel tetragonal pyramid-shaped porous ZnO nanostructure and its application in the biosensing of horseradish peroxidase. J Mater Chem 2008, 18: 1919-1926.
[13]
Liu Z, Jin Z, Li W, et al. Preparation of porous ZnO plate crystal thin films by electrochemical deposition using PS template assistant. Mater Lett 2006, 60: 810-814.
[14]
Li S, Zhang X, Jiao X, et al. One-step large-scale synthesis of porous ZnO nanofibers and their application in dye-sensitized solar cells. Mater Lett 2011, 65: 2975-2978.
[15]
Ching CG, Ooi PK, Ng SS, et al. Fabrication of porous ZnO via electrochemical etching using 10 wt% potassium hydroxide solution. Mat Sci Semicon Proc 2013, 16: 70-76.
[16]
Xiong H-M, Shchukin DG, Möhwald H, et al. Sonochemical synthesis of highly luminescent zinc oxide nanoparticles doped with magnesium(II). Angew Chem Int Edit 2009, 48: 2727-2731.
[17]
Andrés Vergés M, Mifsud A, Sernad CJ. Formation of rod-like zinc oxide microcrystals in homogeneous solutions. J Chem Soc Faraday Trans 1990, 86: 959-963.
[18]
Sowri Babu K, Ramachandra Reddy A, Sujatha Ch, et al. Optimization of UV emission intensity of ZnO nanoparticles by changing the excitation wavelength. Mater Lett 2013, 99: 97-100.
[19]
Giri PK, Bhattacharyya S, Singh DK, et al. Correlation between microstructure and optical properties of ZnO nanoparticles synthesized by ball milling. J Appl Phys 2007, 102: 093515.
Publication history
Copyright
Acknowledgements
Rights and permissions

Publication history

Received: 18 March 2013
Revised: 19 April 2013
Accepted: 03 May 2013
Published: 07 September 2013
Issue date: September 2013

Copyright

© The author(s) 2013

Acknowledgements

The authors thank the dean of School of Physics, University of Hyderabad, for providing FE-SEM facility generously, and are also grateful to Y. B. Ravi Shankar for his continuous support in XRD analysis of the samples.

Rights and permissions

Open Access: This article is distributed under the terms of the Creative Commons Attribution Noncommercial License which permits any noncommercial use, distribution, and reproduction in any medium, provided the original author(s) and source are credited.

Reprints and Permission requests may be sought directly from editorial office.

Return