PDF (1.7 MB)
Collect
Submit Manuscript
Show Outline
Figures (6)

Tables (1)
Table 1
Research Article | Open Access

Tailoring of electrical properties of BiFeO3 by praseodymium

Samita PATTANAYAKAshwasa PRIYADARSHANRitesh SUBUDHIRanjan Kumar NAYAKRajib PADHEE*()
Department of Physics, Institute of Technical Education & Research, Siksha ‘O’ Anusandhan University, Bhubaneswar 751030, India
Show Author Information

Abstract

The polycrystalline samples of Bi1-xPrxFeO3 (x = 0 and 0.1) were prepared by a solid-state reaction technique. Preliminary X-ray structural analysis has confirmed the formation of a single-phase compound. Studies of dielectric and impedance spectroscopy of the materials, carried out in wide frequency (1 kHz–1 MHz) and temperature (25–400 ℃) ranges, have provided many interesting results including significant decrement in tangent loss, structural stability, obeying Jonscher’s universal power law, etc.

References

[1]
Zhao T, Scholl A, Zavaliche F, et al. Electrical control of antiferromagnetic domains in multiferroic BiFeO3 films at room temperature. Nat Mater 2006, 5: 823-829.
[2]
Ramesh R, Spaldin NA. Multiferroics: Progress and prospects in thin films. Nat Mater 2007, 6: 21-29.
[3]
Rehspringer J-L, Bursik J, Niznansky D, et al. Characterisation of bismuth-doped yttrium iron garnet layers prepared by sol–gel process. J Magn Magn Mater 2000, 211: 291-295.
[4]
Das R, Khan GG, Mandal K. Enhanced ferroelectric, magnetoelectric, and magnetic properties in Pr and Cr co-doped BiFeO3 nanotubes fabricated by template assisted route. J Appl Phys 2012, 111: 104115.
[5]
Karimi S, Reaney IM, Han Y, et al. Crystal chemistry and domain structure of rare-earth doped BiFeO3 ceramics. J Mater Sci 2009, 44: 5102-5112.
[6]
Michel C, Moreau J-M, Achenbach GD, et al. The atomic structure of BiFeO3. Solid State Commun 1969, 7: 701-704.
[7]
Teague JR, Gerson R, James WJ. Dielectric hysteresis in single crystal BiFeO3. Solid State Commun 1970, 8: 1073-1074.
[8]
Xu JM, Wang GM, Wang HX. Synthesis and weak ferromagnetism of Dy-doped BiFeO3 powders. Mater Lett 2009, 63: 855-857.
[9]
Vopsaroiu M, Cain MG, Sreenivasulu G, et al. Multiferroic composite for combined detection of static and alternating magnetic fields. Mater Lett 2012, 66: 282-284.
[10]
Parida BN, Das PR, Padhee R, et al. Synthesis and chracterization of a tungsten bronze ferroeletcric oxide. Adv Mat Lett 2012, 3: 231-238.
[11]
Wu E. POWDMULT: An interactive powder diffraction data interpretation and indexing program version 2.1. School of Physical Sciences, Flinders University of South Australia, Bradford Park, SA 5042, Australia.
[12]
Parida BN, Das PR, Padhee R, et al. Phase transition and conduction mechanism of rare earth based tungsten–bronze compounds. J Alloys Compd 2012, 540: 267-274.
[13]
Barick BK, Mishra KK, Arora AK, et al. Impedance and Raman spectroscopic studies of (Na0.5Bi0.5)TiO3. J Phys D: Appl Phys 2011, 44: 355402.
[14]
Nalwa KS, Garg A, Upadhya A. Effect of samarium doping on the properties of solid-state synthesized multiferroic bismuth ferrite. Mater Lett 2008, 62: 878-881.
[15]
Parida BN, Das PR, Padhee R, et al. A new ferroelectric oxide Li2Pb2Pr2W2Ti4Nb4O30: Synthesis and characterization. J Phys Chem Solids 2012, 73: 713-719.
[16]
Wieczorek W, Płocharski J, Przyłuski J. Impedance spectroscopy and phase structure of PEO NaI complexes. Solid State Ionics 1982, 28–30: 1014-1017.
[17]
Behera B, Nayak P, Choudhary RNP. Structural and impedance properties of KBa2V5O15 ceramics. Mater Res Bull 2008, 43: 401-410.
[18]
Jonscher AK. The ‘universal’ dielectric response. Nature 1977, 267: 673-679.
[19]
Suman CK, Prasad K, Choudhary RNP. Complex impedance studies on tungsten–bronze electroceramic: Pb2Bi3LaTi5O18. J Mater Sci 2006, 41: 369-375.
[20]
Irvine JTS, Sinclair DC, West AR. Electroceramics: Characterization by impedance spectroscopy. Adv Mater 1990, 2: 132-138.
[21]
Macdonald JR. Note on the parameterization of the constant-phase admittance element. Solid State Ionics 1984, 13: 147-149.
[22]
Choudhary RNP, Perez K, Bhattachrya P, et al. Structural and electrical properties of BiFeO3–Pb(ZrTi)O3 composites. Appl Phys A 2007, 86: 131-138.
[23]
Pattanayak S, Parida BN, Das PR, et al. Impedance spectroscopy of Gd-doped BiFeO3 multiferroics. Appl Phys A 2012, .
[24]
Barick BK, Choudhary RNP, Pradhan DK. Phase transition and electrical properties of lanthanum-modified sodium bismuth titanate. Mater Chem Phys 2012, 132: 1007-1014.
[25]
Shukla A, Choudhary RNP. Study of electrical properties of La3+/Mn4+-modified PbTiO3 nanoceramics. J Mater Sci 2012, 47: 5074-5085.
Journal of Advanced Ceramics
Pages 235-241
Cite this article:
PATTANAYAK S, PRIYADARSHAN A, SUBUDHI R, et al. Tailoring of electrical properties of BiFeO3 by praseodymium. Journal of Advanced Ceramics, 2013, 2(3): 235-241. https://doi.org/10.1007/s40145-013-0065-x
Metrics & Citations  
Article History
Copyright
Rights and Permissions
Return