Journal Home > Volume 1 , Issue 3

This paper reports that ferromagnetism (FM) can be induced in ferroelectric barium titanate (BaTiO3) ceramic with selection of appropriate substituents like Zn and Mn. High density polycrystalline samples of Zn and Mn substituted BaTiO3 (Ba1-xZnxTi1-xMnxO3, x=0, 0.02, 0.04, 0.06, 0.08 and 0.1) were prepared using slow step solid state sintering technique to study the effect of equiproprotional substituents on structural, ferroelectric and magnetic properties of BaTiO3 (BTO). High precision electrical and magnetic measurements were carried out along with XRD, XPS, and SEM to understand and co-relate magnetic and ferroelectric hysteresis loop observed at room temperature with different values of 'x'. It is seen that ferroelectric hysteresis loop (P~E) is deteriorated (became lossy type) with the increase of Zn and Mn concentration. However, at x=0.1, the material showed the signature of room temperature ferromagnetism, which is an index for BTO to became a promising material for multiferroic applications. M~H loops observed in Zn and Mn substituted BTO are expected to be due to the formation of oxygen vacancies and exchange interaction induced magnetism.


menu
Abstract
Full text
Outline
About this article

Effect of equiproprotional substitution of Zn and Mn in BaTiO3 ceramic—An index to multiferroic applications

Show Author's information S. K. DASP. P. ROUTS. K. PRADHANB. K. ROUL*( )
Institute of Materials Science, Planetarium Building, Acharya Vihar, Bhubaneswar 751013, India

Abstract

This paper reports that ferromagnetism (FM) can be induced in ferroelectric barium titanate (BaTiO3) ceramic with selection of appropriate substituents like Zn and Mn. High density polycrystalline samples of Zn and Mn substituted BaTiO3 (Ba1-xZnxTi1-xMnxO3, x=0, 0.02, 0.04, 0.06, 0.08 and 0.1) were prepared using slow step solid state sintering technique to study the effect of equiproprotional substituents on structural, ferroelectric and magnetic properties of BaTiO3 (BTO). High precision electrical and magnetic measurements were carried out along with XRD, XPS, and SEM to understand and co-relate magnetic and ferroelectric hysteresis loop observed at room temperature with different values of 'x'. It is seen that ferroelectric hysteresis loop (P~E) is deteriorated (became lossy type) with the increase of Zn and Mn concentration. However, at x=0.1, the material showed the signature of room temperature ferromagnetism, which is an index for BTO to became a promising material for multiferroic applications. M~H loops observed in Zn and Mn substituted BTO are expected to be due to the formation of oxygen vacancies and exchange interaction induced magnetism.

Keywords: magnetism, Key words: ceramic, hexagonal, polarization

References(24)

[1]
Dang NV, Thanh TD, Hong LV, et al. Structural, optical and magnetic properties of polycrystalline BaTi1−xFexO3 ceramics. J Appl Phys 2011, 110: 043-914.
[2]
Shuai Y, Zhou S, Burger D, et al. Decisive role of oxygen vacancy in ferroelectric versus ferromagnetic Mn doped BaTiO3 thin films. J Appl Phys 2011, 109: 084-105.
[3]
Tong X, Lin YH, Zhang S, et al. Preparation of Mn-doped BaTiO3 nanoparticles and their magnetic properties. J Appl Phys 2008, 104: 066-108.
[4]
Nakayama H, Katayama-Yoshida H. Theoretical predication of magnetic properties of Ba (Ti1-xMx) O3 (M=Sc, V, Cr, Mn, Fe, Co, Ni, Cu). Jpn J Appl Phys 2001, 40: 1355-1358.
[5]
Chikada S, Hirose K, Yamamoto T. Analysis of local environment of Fe ions in hexagonal BaTiO3. Jpn J Appl Phys 2010, 49: 091-502.
[6]
Phoosit N, Phanichphant S. Study on electrical properties of Mn-doped 6h-BaTiO3 ceramics using impedance spectroscopy. Chiang Mai J Sci 2007, 34(3): 297-308.
[7]
Jayanthi S, Kutty TRN. Dielectric properties of 3d transition metal substituted BaTiO3 ceramics containing the hexagonal phase formation. J Mater Sci: Mater Electron 2008, 19: 615-626.
[8]
Lin F, Shi W. Influence of non-isovalention substitution at A site on microstructure and magnetic properties of Ba(Ti0.3Fe0.7)O3 ceramic. J Alloys Compd 2010, 495: 167-172.
[9]
Du GP, Hu Z J, Han QF, et al. Effects of niobium donor doping on the phase structures and magnetic properties of Fe-doped BaTiO3 ceramics. J Alloys Compd 2010, 492: 79-81.
[10]
Shuai Y, Zhou S, Schmidt H. Electrical and magnetic properties of polycrystalline Mn-doped BaTiO3 thin films grown on Pt/sapphire substrates by pulsed laser deposition. Advances in Sci and Tech 2010, 67: 212-217.
[11]
Lin F, Shi W. Magnetic properties of transition-metal-codoped BaTiO3 systems. J Alloys Compd 2009, 475: 64-69.
[12]
Gao L, Zhai J.The influence of Co doping on the dielectric, ferroelectric and ferromagnetic properties of Ba0.70Sr0.30TiO3 thin films. Applied Surface Science 2009, 255: 4521-4525.
[13]
Fasaso AY, Maaza M, Rohwer EG, et al. Effect of Zn-doping on the structural and optical properties of BaTiO3 thin films grown by pulsed laser deposition. Thin Solid Film 2008, 516: 6226-6232.
[14]
Kirianov A, Ozaki N, Ohsato H, et al. Studies on the solid solution of Mn in BaTiO3. Jpn J Appl Phys 2001, 40: 5619-5623.
[15]
Miura K, Azuma M, Funakubo H. Electronic and structural properties of ABO3: Role of the B-O coulomb repulsions for eerroelectricity. Materials 2011, 4: 260-273.
[16]
Langhammer HT, Muller T, Felgner KL, et al. Crystal structure and related properties of manganese-doped barium titanate ceramics. J Am Ceram Soc 2000, 83: 605-611.
[17]
Makhova L, Hesse R, Ullrich M, et al. Surface potential of BaTiO3 single crystal near the Curie temperature. Phys Rev B 2011,83: 115-407.
[18]
Dawson JA, Freeman CL, Ben LB, et al. An atomistic study into the defect chemistry of hexagonal barium titanate. J Appl Phys 2011, 109: 084-102.
[19]
Fang Y, KuiJuan J, HuiBin LU, et al. Oxygen vacancy induced magnetism in BaTiO3−δ and Nb: BaTiO3−δ thin films. Science China 2010, 53: 852-855.
[20]
Mangalama RVK, Ray N, Waghmare UV. Multiferroic properties of nanocrystalline BaTiO3. Solid State Commun 2009, 149: 1-5.
[21]
Dietl T, Ohno H, Matsukura F. Zener model description of ferromagnetism in zinc-blende magnetic semiconductors. Science 2000, 287: 1019-1022.
[22]
Norton DP, Theodoropoulou NA, Hebard AF, et al. Properties of Mn-implanted BaTiO3, SrTiO3, and KTaO3. Electrochemical and Solid-State Letters 2003, 6: 19-21.
[23]
Zhao Z, Buscaglia V, Viviani M, et al. Grain-size effects on the ferroelectric behavior of dense nanocrystalline BaTiO3 ceramics. Phys Rev B 2004, 70: 024-107.
[24]
Kuehn M, Kliem H. The method of local fields: A bridge between molecular modelling and dielectric theory. J of Elctrostatics 2009, 67: 203-208.
Publication history
Copyright
Acknowledgements
Rights and permissions

Publication history

Received: 22 September 2012
Accepted: 09 October 2012
Published: 11 December 2012
Issue date: September 2012

Copyright

© The author(s) 2012

Acknowledgements

Author S. K. Das acknowledges to CSIR, New Delhi for providing financial support, CRF, IIT-Kharagpur for SEM measurements and CIF, IIT-Guwahati for magnetic measurements. The authors also acknowledge to Mr. S. Choudhury of IOP, Bhubaneswar for his help in carrying out XPS measurements.

Rights and permissions

Return