Journal Home > Volume 1 , Issue 3

The present article aims to give a brief overview about the advantages of the hydrothermal crystallization method for the synthesis of advanced ceramics. Emphasis is given, not only on the conventional hydrothermal crystallization, but also on some of its variants; such as ultrasound-assisted, electrochemical-assisted, microwave-assisted and surfactant-assisted hydrothermal methods which open up new opportunities for the synthesis of ceramic materials with novel properties demanded for advanced applications. In the current work the synthesis of barium titanate (BaTiO3), lithium metasilicate (Li2SiO3) and sodium-potassium niobate (Na, K)NbO3 powders are reported as cases of study.


menu
Abstract
Full text
Outline
About this article

Synthesis of advanced ceramics by hydrothermal crystallization and modified related methods

Show Author's information José ORTIZ-LANDEROSaCarlos GÓMEZ-YÁÑEZaRigoberto LÓPEZ-JUÁREZb( )Iván DÁVALOS-VELASCOHeriberto PFEIFFERc
Departamento de Ingeniería Metalúrgica, Escuela Superior de Ingeniería Química e Industrias Extractivas, IPN, UPALM, Av. Instituto Politécnico Nacional s/n, CP 07738, México DF, México.
Centro de Ciencias Aplicadas y Desarrollo Tecnológico, Universidad Nacional Autónoma de México, A.P. 70-186, Coyoacán, México D.F., México.
Instituto de Investigaciones en Materiales, Universidad Nacional Autónoma de México, Circuito exterior s/n, Ciudad Universitaria, ???Del. Coyoacán, CP 04510, México DF, México.

Abstract

The present article aims to give a brief overview about the advantages of the hydrothermal crystallization method for the synthesis of advanced ceramics. Emphasis is given, not only on the conventional hydrothermal crystallization, but also on some of its variants; such as ultrasound-assisted, electrochemical-assisted, microwave-assisted and surfactant-assisted hydrothermal methods which open up new opportunities for the synthesis of ceramic materials with novel properties demanded for advanced applications. In the current work the synthesis of barium titanate (BaTiO3), lithium metasilicate (Li2SiO3) and sodium-potassium niobate (Na, K)NbO3 powders are reported as cases of study.

Keywords: Key words: hydrothermal synthesis, barium titanate, Li2SiO3, potassium-sodium niobate

References(135)

[1]
Byrappa K, Yoshimura M.Handbook of Hydrothermal Technology. New York:William Andrew,2001.
DOI
[2]
Byrappa K, Adschiri T.Progress in Crystal Growth and Characterization of Materials.Amsterdam: Elsevier,2007.
[3]
Lalena JN, Cleary DA, Carpenter E, et al.Inorganic Material Synthesis and Fabrication. New Jersey:John Wiley & Sons Inc, 2008.
DOI
[4]
Riman RE, Suchanek WL, Lencka MM.Hydrothermal crystallization of ceramics. Ann Chim Sci Mat 2002,27: 15-36.
[5]
Bucher K, Frey M.Petrogenesis of Metamorphic Rocks.Berlin:Springer, 2002.
DOI
[6]
Roy R, Tuttle OF. Investigations under hydrothermal conditions.Phys Chem Earth 1956,1: 138-180.
[7]
Suchanek WL, Riman RE.Hydrothermal synthesis of advanced ceramic powders.Advances in Science and Technology 2006,45: 184-193.
[8]
Tang XL, Xiao XF, Liu RF. Structural characterization of silicon-substituted hydroxyapatite synthesized by a hydrothermal method. Mater Lett 2005, 59: 3841-3846.
[9]
Yoshimura M, Sujaridworakun P, Koh F, et al. Hydrothermal conversion of calcite crystals to hydroxyapatite. Mater Sci Eng C 2004,24: 521-525.
[10]
Zhang H, Zhu Q.Structure control in hydroxyapatite synthesis by hydrothermal reaction and organic modulators.Particuology 2005,3: 317-320.
[11]
Hu X, Shen H, Cheng Y, et al.One-step modification of nano-hydroxyapatite coating on titanium surface by hydrothermal method.Surf Coat Tech 2010,205: 2000-2006.
[12]
Wang H, Lin YS.Effects of synthesis conditions on MFI zeolite membrane quality and catalytic cracking deposition modification results.Micropor Mesopor Mat 2011,142: 481-488.
[13]
Cundy CS, Cox PA.The hydrothermal synthesis of zeolites: Precursors, intermediates and reaction mechanism. Micropor Mesopor Mat 2005,82: 1-78.
[14]
Whittingham MS, Guo JD, Chen R, et al.The hydrothermal synthesis of new oxide materials.Solid State Ionics 1995,75: 257-268.
[15]
Panda SK, Chaudhuri S. Chelating ligand-mediated synthesis of hollow ZnS microspheres and its optical properties. J Colloid Interf Sci 2007,313: 338-344.
[16]
López-Luke T, Dela Rosa E, Sólis D, et al.Effect of the CTAB concentration on the upconversion emission of ZrO2:Er3+nanocrystals.Opt Mater 2006,29: 31-37.
[17]
Yang JY, Su YC, Liu XY. Hydrothermal synthesis, characterization and optical properties of La2Sn2O7:Eu3+micro-octahedra.Nonferrous Met Soc China 2011,21: 535-543.
[18]
Kim JR, Lee KY, Suh MJ, et al.Ceria–zirconia mixed oxide prepared by continuous hydrothermal synthesis in supercritical water as catalyst support. Catal Today 2011,185: 25-34.
[19]
Ifrah S, Kaddouri A, Gelin P, et al.Conventional hydrothermal process versus microwave-assisted hydrothermal synthesis of La1-xAgxMnO3+δ(x= 0, 0.2) perovskites used in methane combustion. CR Chimie 2007, 10: 1216-1226.
[20]
Solís D, López-Luke T, Dela Rosa E, et al.Surfactant effect on the up conversion emission and decay time of ZrO2: Yb-Er nanocrystals.J Lumin 2009,129: 449-455.
[21]
Zhang DR, Liu HL, Jin RH, et al.Synthesis and characterization of nanocrystalline LiTiO2 using a one-step hydrothermal method. J Ind Eng Chem 2007,13: 92-96.
[22]
Wang SM, Wang QS, Wan QL.Template-directed synthesis of MS (M=Cd, Zn) hollow microsphere via hydrothermal method.J Cryst Growth 2008,310: 2439-2443.
[23]
Piticescu R, Monty C, Millers D.Hydrothermal synthesis of nanostructured zirconia materials: Present state and future prospects.Sensor Actuat B 2005,109: 102-106.
[24]
Kaya C, He JY, Gu X, et al.Nanostructured ceramic powders by hydrothermal synthesis and their applications.Micropor Mesopor Mat 2002,54: 37-49.
[25]
Yan C, Zou L, Xue D, et al.Chemical tuning polymorphology of functional materials by hydrothermal and solvothermal reactions.J Mater Sci 2008,43: 2263-2269.
[26]
Schäf O, Ghobarkar H, Knauth P.Nanostructured Materials: Selected Synthesis Methods, Properties and Applications. Norwell: Kluwer Academic, 2002.
[27]
Zeng HC.Ostwald ripening: A synthetic approach for hollow nanomaterials.Current Nanoscience 2007,3: 177-181.
[28]
Meskin PE, Ivanov VK, Barantchikov AE, et al. Ultrasonically assisted hydrothermal synthesis of nanocrystalline ZrO2, TiO2, NiFe2O4and Ni0.5Zn0.5Fe2O4powders.Ultrasonics Sonochem 2006,13: 47-53.
[29]
Meskin PE, Sharikov FY, Ivanov VK, et al.Rapid formation of nanocrystalline HfO2powders from amorphous hafnium hydroxide under ultrasonically assisted hydrothermal treatment.Mater Chem Phys 2007,104: 439-443.
[30]
Rujiwatra A, Wongtaewan C, Pinyo W, et al.Sonocatalyzed hydrothermal preparation of lead titanate nanopowders.Mater Lett 2007,61: 4522-4524.
[31]
Gedanken A. Using sonochemistry for the fabrication of nanomaterials.Ultrason Sonochem 2004,11: 47-55.
[32]
Mason JT.Use of ultrasound in chemical synthesis.Ultrasonics 1986,24: 245-253.
[33]
Manafi S, Nadali H, Irani HR.Low temperature synthesis of multi-walled carbon nanotubes via a sonochemical/hydrothermal method.Mater Lett 2008,62: 4175-4176.
[34]
Li H, Liu G, Chen S, et al.Novel Fe doped mesoporous TiO2microspheres: Ultrasonic-hydrothermal synthesis, characterization, and photocatalytic properties. Physica E 2010,42: 1844-1849.
[35]
Suchanek W, Watanabe T, Yoshimura M.Preparation of BaTiO3thin films by the hydrothermal-electrochemical method in the flowing solution.Solid State Ionics 1998,109: 65-72.
[36]
Wu Z, Yoshimura M.Investigations on procedures of the fabrication of barium titanate ceramic films under hydrothermal-electrochemical conditions.Solid State Ionics 1999,122: 161-172.
[37]
Hill LI, Verbaere A, Guyomard D.MnO2(α-, β-, γ-) compounds prepared by hydrothermal-electrochemical synthesis: characterization, morphology, and lithium insertion behavior.J Power Sources 2003,119: 226-231.
[38]
Yoshimura M, Han KS, Tsurimoto S.Direct fabrication of thin-film LiNiO2electrodes in LiOH solution by electrochemical-hydrothermal method.Solid State Ionics 1998,106: 39-44.
[39]
Yoshimura M, Asai O, Cho WS, et al.Low-temperature synthesis of crystallized Ca1-xSrxTiO3solid-solution films on titanium substrates by a modified hydrothermal-electrochemical technique. J Alloy Compd 1998, 265: 132-136.
[40]
Watanabe T, Cho WS, Suchanek WL, et al.Direct fabrication of crystalline vanadates films by hydrothermal-electrochemical method.Solid State Sciences 2001,3: 183-188.
[41]
Xiao XF, Liu RF, Zheng YZ.Hydoxyapatite/ titanium composite coating prepared by hydrothermal-electrochemical technique.Mater Lett 2005,59: 1660-1664.
[42]
Xiao XF, Liu RF, Zheng YZ.Characterization of hydroxyapatite/titania composite coatings codeposited by a hydrothermal-electrochemical method on titanium. Surf Coat Tech 2006,200: 4406-4413.
[43]
Agarwal S, Sharma GL.Humidity sensing properties of (Ba, Sr)TiO3thin films grown by hydrothermal-electrochemical method.Sensor Actuat B 2002,85: 205-211.
[44]
Komarneni S, Roy R, Li QH.Microwave-hydrothermal synthesis of ceramic powders.Mat Res Bull 1992,27: 1393-1405.
[45]
Komarneni S, Li Q, Stefansson KM, et al.Microwave-hydrothermal processing for synthesis of electroceramic powders.J Mater Res 1993,8: 3176-3183.
[46]
Bilecka I, Niederberger M.Microwave chemistry for inorganic nanomaterials synthesis. Nanoscale 2010,2: 1358-1374.
[47]
Sun W, Li C, Li J, et al.Microwave-hydrothermal synthesis of tetragonal BaTiO3under various conditions. Mater Chem Phys 2006,97: 481-487.
[48]
Sun W, Li J.Microwave-hydrothermal synthesis of tetragonal barium titanate. Mater Lett 2006,60: 1599-1602.
[49]
Tan CK, Goh GK, Lau GK.Growth and dielectric properties of BaTiO3thin films prepared by the microwave-hydrothermal method. Thin Solid Films 2008,516: 5545-5550.
[50]
Hu Y, Liu C, Zhang Y, et al.Microwave-assisted hydrothermal synthesis of nanozeolites with controllable size. Micropor Mesopor Mat 2009,119: 306-314.
[51]
Riccardi CS, Lima RC, Dos Santos ML, et al.Preparation of CeO2by a simple microwave-hydrothermal method. Solid State Ionics 2009,180: 288-291.
[52]
Chen Z, Li W, Zeng W, et al.Microwave hydrothermal synthesis of nanocrystalline rutile. Mater Lett 2008,62: 4343-4344.
[53]
Zhang P, Liu B, Yin S, et al.Rapid synthesis of nitrogen doped titania with mixed crystal lattice via microwave-assisted hydrothermal method. Mater Chem Phys 2009,116: 269-272.
[54]
Lee JH, Kim CK, Katoh S, et al.Microwave-hydrothermal versus conventional hydrothermal preparation of Ni- and Zn-ferrite powders.J Alloy Compd 2001,325: 276-280.
[55]
Khollam YB, Deshpande SB, Khanna PK, et al.Microwave-accelerated hydrothermal synthesis of blue white phosphor: Sr2CeO4. Mater Lett 2004,58: 2521-2524.
[56]
Zhang W, Lin D, Sun M, et al.Microwave hydrothermal synthesis and photocatalytic activity of AgIn5S8for the degradation of dye. J Solid State Chem 2010,183: 2466-2474.
[57]
Simoes AZ, Moura F, Onofre TB, et al.Microwave-hydrothermal synthesis of barium strontium titanate nanoparticles.J Alloy Compd 2010,508: 620-624.
[58]
Chen X, Wang W, Chen X, et al.Microwave hydrothermal synthesis and upconversion properties of NaYF4: Yb3+, Tm3+with microtube morphology.Mater Lett 2009,63: 1023-1026.
[59]
Potdar HS, Deshpande SB, Deshpande AS, et al.Preparation of ceria-zirconia (Ce0.75Zr0.25O2) powders by microwave-hydrothermal (MH) route. Mater Chem Phys 2002,74: 306-312.
[60]
Ji H, Yang G, Miao X, et al.Efficient microwave hydrothermal synthesis of nanocrystalline orthorhombic LiMnO2cathodes for lithium batteries.Electrochim Acta 2010,55: 3392-3397.
[61]
Vicente I, Cesteros PS, Guirado F, et al.Fast microwave synthesis of hectorite.Appl Clay Sci 2009,43: 103-107.
[62]
Al-Tuwirqi RM, Al-Ghamdi AA, Al-Hazmi F, et al.Synthesis and physical properties of mixed Co3O4/CoO nanorods by microwave hydrothermal technique.Superlattice Microst 2011,50: 437-448.
[63]
Yamauchi T, Tsukahara Y, Sakata T, et al.Barium ferrite powders prepared by microwave-induced hydrothermal reaction and magnetic property. J Magn Magn Mater 2009,321: 8-11.
[64]
Cao SW, Zhu YJ, Cheng GF, et al.ZnFe2O4nanoparticles: Microwave-hydrothermal ionic liquid synthesis and photocatalytic property over phenol.J Hazard Mater 2009,171: 431-435.
[65]
Cao SW, Zhu YJ, Cui JB.Iron hydroxyl phosphate microspheres: Microwave-solvothermal ionic liquid synthesis, morphology control, and photoluminescent properties.J Solid State Chem 2010,183: 1704-1709.
[66]
Cao SW, Zhu YJ.Iron oxide hollow spheres: Microwave-hydrothermal ionic liquid preparation, formation mechanism, crystal phase and morphology control and properties.Acta Mater 2009,57: 2154-2165.
[67]
Yin S, Luo Z, Xia J, et al.Microwave-assisted synthesis of Fe3O4nanorods and nanowires in an ionic liquid.J Phys Chem Solids 2010,71: 1785-1788.
[68]
Dong WS, Li MY, Liu C, et al.Novel ionic liquid assisted synthesis of SnO2microspheres. J Colloid Interf Sci 2008,319: 115-122.
[69]
Wang Y, Zhou A, Yang Z.Preparation of hollow TiO2microspheres by the reverse microemulsions.Mater Lett 2008,62: 1930-1932.
[70]
Tang Z, Hu L, Zhang Z, et al.Hydrothermal synthesis of high surface area mesoporous lithium aluminate.Mater Lett 2007,61: 570-573.
[71]
Liu S, Lebedev OI, Mertens M, et al.The merging of silica-surfactant microspheres under hydrothermal conditions.Micropor Mesopor Mat 2008,116: 141-146.
[72]
Khan F, Eswaramoorthy M, Rao CN.Macroporous silver monoliths using a simple surfactant. Solid State Sci 2007,9: 27-31.
[73]
Turta NA, De Luca P, Bilba N, et al.Synthesis of titanosilicate ETS-10 in presence of cetyltrimethylammonium bromide.Micropor Mesopor Mat 2008,112: 425-431.
[74]
Wang S, Xiu H, Qian L, et al.CTAB-assisted synthesis and photocatalytic property of CuO hollow microspheres.J Solid State Chem 2009,182: 1088-1093.
[75]
Zhao Z, Zhang L, Dai H, et al.Surfactant-assisted solvo- or hydrothermal fabrication and characterization of high-surface-area porous calcium carbonate with multiple morphologies.Micropor Mesopor Mat 2011,138: 191-199.
[76]
Xu C, Zou D, Wang L, et al.γ-Bi2MoO6nanoplates: Surfactant-assisted hydrothermal synthesis and optical properties.Ceram Int 2009,35: 2099-2102.
[77]
Meng X, Zhang L, Dai H, et al.Surfactant-assisted hydrothermal fabrication and visible-light-driven photocatalytic degradation of methylene blue over multiple morphological BiVO4single-crystallites.Mater Chem Phys 2011,125: 59-65.
[78]
García-Benjume ML, Espitia-Cabrera MI, Contreras-García ME.Hierarchical macro-mesoporous structures in the system TiO2-Al2O3, obtained by hydrothermal synthesis using Tween-20®as a directing agent.Mater Charact 2009,60: 1482-1488.
[79]
Zhao Q, Wang YG.A facile two-step hydrothermal route for the synthesis of low-dimensional structured Bi2Te3nanocrystals with various morphologies.J Alloy Compd 2010,497: 57-61.
[80]
Zhang A, Zhang J.Characterization of visible-light-driven BiVO4photocatalysts synthesized via a surfactant-assisted hydrothermal method. Spectrochim Acta A 2009,73: 336-341.
[81]
Qu L, He C, Yang Y, et al.Hydrothermal synthesis of alumina nanotubes templated by anionic surfactant. Mater Lett 2005,59: 4034-4037.
[82]
Wang Y, Zhang S, Wei K, et al.Hydrothermal synthesis of hydroxyapatite nanopowders using cationic surfactant as a template.Mater Lett 2006,60: 1484-1487.
[83]
Jing Z, Han D, Wu S.Morphological evolution of hematite nanoparticles with and without surfactant by hydrothermal method.Mater Lett 2005,59: 804-807.
[84]
Ji GB, Tang SL, Ren SK, et al.Simplified synthesis of single-crystalline magnetic CoFe2O4nanorods by a surfactant-assisted hydrothermal process.J Cryst Growth 2004,270: 156-161.
[85]
Wang J, Hojamberdiev M, Xu Y, et al.Nonionic surfactant-assisted hydrothermal synthesis of YVO4: Eu3+powders in a wide pH range and their luminescent properties.Mater Chem Phys 2011,125: 82-86.
[86]
Sun G, Cao M, Wang Y, et al.Anionic surfactant-assisted hydrothermal synthesis of high-aspect-ratio ZnO nanowires and their photoluminescence property.Mater Lett 2006,60: 2777-2782.
[87]
Wang YX, Sun J, Fan XY, et al. ACTAB-assisted hydrothermal and solvothermal synthesis of ZnO nanopowders.Ceram Int 2011,37: 3431-3436.
[88]
Yan H, Zhang XH, Wu JM, et al.The use of CTAB to improve the crystallinity and dispersibility of ultrafine magnesium hydroxide by hydrothermal route. Powder Technol 2008,188: 128-132.
[89]
Flaschen SS.An aqueous synthesis of barium titanate.J Am Chem Soc 1955,77: 6194-6194.
[90]
McCormick MA, Slamovich EB.Microstructure development and dielectric properties of hydrothermal BaTiO3thin films.J Eur Ceram Soc 2003,23: 2143-2152.
[91]
Lee B, Kim H, Cho S.Hydrothermal preparation of BaTiO3 powders from modified hydroxide precursors.Ferroelectrics 2006,333: 233-241.
[92]
Habib A, Haubner R, Stelzer N.Effect of temperature, time and particle size of Ti precursor on hydrothermal synthesis of barium titanate. Mat Sci Eng B 2008,152: 60-65.
[93]
Hakuta Y, Ura H, Hayashi H, et al.Continuous production of BaTiO3 nanoparticles by hydrothermal synthesis.Ind Eng Chem Res 2005,44: 840-846.
[94]
Zhu X, Zhenghai Z, Zhu J, et al.Morphology and atomic-scale surface structure of barium titanate nanocrystals formed at hydrothermal conditions.J Cryst Growth 2009,311: 2437-2442.
[95]
Oledzka M, Brese NE, Riman RE. Hydrothermal synthesis of BaTiO3on a titanium-loaded polymer support.Chem Mater 1999,11: 1931-1935.
[96]
Chen C, Wei Y, Jiao X, et al.Hydrothermal synthesis of BaTiO3: Crystal phase and the Ba2+ions leaching behavior in aqueous medium.Mater Chem Phys 2008,110: 186-191.
[97]
Cruz D, Bulbulian S, Lima E, et al.Kinetic analysis of the thermal stability of lithium silicates (Li4SiO4and Li2SiO3).J Solid State Chem 2006,179: 909-916.
[98]
Tang T, Zhang Z, Meng JB, et al.Synthesis and characterization of lithium silicate powders.Fusion Eng Des 2009,84: 2124-2130.
[99]
Furusawa SI, Kamiyama A, Tsurui T.Fabrication and ionic conductivity of amorphous lithium meta-silicate thin film.Solid State Ionics 2008,179: 536-542.
[100]
Furusawa SI, Kasahara T, Kamiyama A.Fabrication and ionic conductivity of Li2SiO3thin film. Solid State Ionics 2009,180: 649-653.
[101]
Naik YP, Mohapatra M, Dahale ND, et al.Synthesis and luminescence investigation of RE3+(Eu3+, Tb3+and Ce3+)-doped lithium silicate (Li2SiO3).J Lumin 2009,129: 1225-1229.
[102]
Morimoto S, Khonthon S, Ohishi Y.Optical properties of Cr3+ion in lithium metasilicate Li2O·SiO2transparent glass-ceramics.J Non-Cryst Solids 2008,354: 3343-3347.
[103]
Zhang B, Nieuwouldt M, Easteal AJ. Sol–gel route to nanocrystalline lithium metasilicate particles. J Am Ceram Soc 2008,91: 1927-1932.
[104]
Khomane RB, Sharma BK, Saha S, et al.Reverse microemulsion mediated sol–gel synthesis of lithium silicate nanoparticles under ambient conditions: Scope for CO2sequestration. Chem Eng Sci 2006,61: 3415-3418.
[105]
Mondragón-Gutiérrez G, Cruz D, Pfeiffer H, et al.Low temperature synthesis of Li2SiO3: Effect on its morphological and textural properties. Research Letters in Materials Science 2008,25: 2513-2522.
[106]
Linkson PB, Phillips BD, Rowles CD. Computer methods for the generation of Eh-pH diagrams.Minerals Sci Eng 1979, 11: 65-79.
[107]
Dias A. Thermodynamic studies as predictive tools of the behavior of electroceramics under different hydrothermal environments.J Solution Chem 2009,38: 843-856.
[108]
Lencka MM, Riman RE. Synthesis of lead titanate: Thermodynamic modeling and experimental verification. J Am Ceram Soc 1993,76: 2649-2659.
[109]
Lencka MM, Riman RE.Thermodynamic modeling of hydrothermal synthesis of ceramic powders.Chem Mater 1993,5: 61-70.
[110]
Lencka MM, Riman RE.Thermodynamics of the hydrothermal synthesis of calcium titanate with reference to other alkaline-earth titanates.Chem Mater 1995,7: 18-25.
[111]
Information on www.factsage.com.
DOI
[112]
Ortiz Landeros J, Contreras García ME, Gómez Yáñez C, et al.Surfactant-assisted hydrothermal crystallization of nanostructured lithium metasilicate (Li2SiO3) hollow spheres: Synthesis, structural and microstructural characterization.J Solid State Chem 2011,184: 1304-1311.
[113]
Sing K.The use of nitrogen adsorption for the characterisation of porous materials.Colloid Surface A 2001,187: 3-9.
[114]
Leofanti G, Padovan M, Tozzola G, et al. Surface area and pore texture of catalysts.Catal Today 1998,41: 207-219.
[115]
Sing KS, Everett DH, Haul RA, et al.Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity.Pure Appl Chem 1985,57: 603-619.
[116]
Ringgaard E, Wurlitzer T.Lead-free piezoceramics based on alkali niobates. J Eur Ceram Soc 2005,25: 2701-2706.
[117]
Hao J, Wang X, Chen R, et al.Synthesis of (Bi0.5Na0.5)TiO3nanocrystalline powders by stearic acid gel method. Mater Chem Phys 2005,90: 282-285.
[118]
Fu ST, Hong LD, Wan C, et al.Preparation and properties of (K0.5Na0.5)NbO3-LiNbO3ceramics.Trans Nonferrous Met Soc China 2006,16: 466-469.
[119]
Wang Y, Yi Z, Li Y, et al.Hydrothermal synthesis of potassium niobate powders.Ceram Int 2007,33: 1611-1615.
[120]
Lu CH, Lo SY, Lin HC.Hydrothermal synthesis of nonlinear optical potassium niobate ceramic powder.Mater Lett 1998,34: 172-176.
[121]
Jing X, Li Y, Yin Q.Hydrothermal synthesis of Na0.5Bi0.5TiO3fine powders. Mater Sci Eng B 2003,99: 506-510.
[122]
Lin D, Xiao D, Zhu J, et al.Synthesis and piezoelectric properties of lead-free piezoelectric [Bi0.5(Na1−xyKxLiy)0.5]TiO3ceramics.Mater Lett 2004,58: 615-618.
[123]
Peng C, Gong W.Preparation and properties of (Bi1/2Na1/2)TiO3-Ba(Ti,Zr)O3lead-free piezoelectric ceramics.Mat Lett 2005,59: 1576-1580.
[124]
Wang X, Chan HL, Choy C.Piezoelectric and dielectric properties of CeO2-added (Bi0.5Na0.5)0.94Ba0.06TiO3lead-free ceramics.Solid State Comm 2003,125: 395-399.
[125]
Jaeger RE, Egerton L. Hot pressing of potassium-sodium niobates.J Am Ceram Soc 1962,45: 209-213.
[126]
Wu L, Zhang JL, Wang CL, et al.Influence of compositional ratio K/Na on physical properties in (KxNa1−x)NbO3ceramics.J Appl Phys 2008,103: 084116.
[127]
Shiratori Y, Magrez A, Pithan C.Particle size effect on the crystal structure symmetry of K0.5Na0.5NbO3. J Eur Ceram Soc 2005,25: 2075-2079.
[128]
Chowdhury A, Bould J, Zhang Y, et al. Nano-powders of Na0.5K0.5NbO3made by a sol-gel method. J Nanopart Res 2010,12: 209-215.
[129]
Chowdhury A, O'Callaghan S, Skidmore TA, et al. Nanopowders of Na0.5K0.5NbO3 prepared by the Pechini method. J Am Ceram Soc 2009,92: 758-761.
[130]
Sun C, Xing X, Chen J, et al. Hydrothermal synthesis of single krystalline (K, Na)NbO3 powders.Eur J Inorg Chem 2007,18:1884-1888.
[131]
Lv JH, Zhang M, Guo M, et al. Hydrothermal synthesis and characterization of KxNa(1−x)NbO3 powders. Int J Appl Ceram Technol 2007, 4: 571-577.
[132]
Santos IC, Loureiro LH, Silva MF, et al.Studies on the hydrothermal synthesis of niobium oxides.Polyhedron 2002,21: 2009-2015.
[133]
Wang X, Zheng S, Zhang Y.A novel method to prepare ultrafine potassium tantalate powders. Mater Lett 2008,62: 1212-1214.
[134]
Liu JF, Li XL, Li YD.Synthesis and characterization of nanocrystalline niobates.J Cryst Growth 2003,247: 419-424.
[135]
Maeda T, Takiguchi N, Ishikawa M, et al.(K, Na)NbO3lead-free piezoelectric ceramics synthesized from hydrothermal powders.Mater Lett 2010,64: 125-128.
Publication history
Copyright
Acknowledgements
Rights and permissions

Publication history

Received: 29 August 2012
Accepted: 09 October 2012
Published: 11 December 2012
Issue date: September 2012

Copyright

© The author(s) 2012

Acknowledgements

The authors thank to SIP-IPN and SNI-CONACYT México for the financial support. Furthermore, the authors thank to Dr. J.J. Cruz Rivera and M.Sc. Tyler T. Norton for their technical help with TEM analyses and technical support on results discussion, respectively.

Rights and permissions

Return