Journal Home > Volume 10 , Issue 6

The design and fabrication of low-cost, high-efficiency, and stable oxygen-evolving catalysts are essential for promoting the overall efficiency of water electrolysis. In this study, mesoporous Ni1–x Fe x O y (0 ≤ x ≤ 1, 1 ≤ y ≤ 1.5) nanorods were synthesized by the facile thermal decomposition of Ni–Fe-based coordination polymers. These polymers passed their nanorod-like morphology to oxides, which served as active catalysts for oxygen evolution reaction (OER). Increasing the Fe-doping amount to 33 at.% decreased the particle size and charge-transfer resistance and increased the surface area, resulting in a reduced overpotential (~302 mV) at 10 mA/cm2 and a reduced Tafel slope (~42 mV/dec), which were accompanied by a far improved OER activity compared with those of commercial RuO2 and IrO2 electrocatalysts. At Fe-doping concentrations higher than 33 at.%, the trend of the electrocatalytic parameters started to reverse. The shift in the dopant concentration of Fe was further reflected in the structural transformation from a NiO (< 33 at.% Fe) rock-salt structure to a biphasic NiO/NiFe2O4 (33 at.% Fe) heterostructure, a NiFe2O4 (66 at.% Fe) spinel structure, and eventually to α-Fe2O3 (100 at.% Fe). The efficient water-oxidation activity is ascribed to the highly mesoporous one-dimensional nanostructure, large surface area, and optimal amounts of the dopant Fe. The merits of abundance in the Earth, scalable synthesis, and highly efficient electrocatalytic activity make mesoporous Ni–Fe binary oxides promising oxygen-evolving catalysts for water splitting.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Mesoporous nickel–iron binary oxide nanorods for efficient electrocatalytic water oxidation

Show Author's information Guang LiuXusheng GaoKaifang WangDongying HeJinping Li( )
Research Institute of Special ChemicalsTaiyuan University of TechnologyTaiyuan030024China

Abstract

The design and fabrication of low-cost, high-efficiency, and stable oxygen-evolving catalysts are essential for promoting the overall efficiency of water electrolysis. In this study, mesoporous Ni1–x Fe x O y (0 ≤ x ≤ 1, 1 ≤ y ≤ 1.5) nanorods were synthesized by the facile thermal decomposition of Ni–Fe-based coordination polymers. These polymers passed their nanorod-like morphology to oxides, which served as active catalysts for oxygen evolution reaction (OER). Increasing the Fe-doping amount to 33 at.% decreased the particle size and charge-transfer resistance and increased the surface area, resulting in a reduced overpotential (~302 mV) at 10 mA/cm2 and a reduced Tafel slope (~42 mV/dec), which were accompanied by a far improved OER activity compared with those of commercial RuO2 and IrO2 electrocatalysts. At Fe-doping concentrations higher than 33 at.%, the trend of the electrocatalytic parameters started to reverse. The shift in the dopant concentration of Fe was further reflected in the structural transformation from a NiO (< 33 at.% Fe) rock-salt structure to a biphasic NiO/NiFe2O4 (33 at.% Fe) heterostructure, a NiFe2O4 (66 at.% Fe) spinel structure, and eventually to α-Fe2O3 (100 at.% Fe). The efficient water-oxidation activity is ascribed to the highly mesoporous one-dimensional nanostructure, large surface area, and optimal amounts of the dopant Fe. The merits of abundance in the Earth, scalable synthesis, and highly efficient electrocatalytic activity make mesoporous Ni–Fe binary oxides promising oxygen-evolving catalysts for water splitting.

Keywords: water splitting, nanorods, electrocatalytic, oxygen evolving, Ni–Fe binary oxide

References(28)

1

Cook, T. R.; Dogutan, D. K.; Reece, S. Y.; Surendranath, Y.; Teets, T. S.; Nocera, D. G. Solar energy supply and storage for the legacy and nonlegacy worlds. Chem. Rev. 2010, 110, 6474–6502.

2

Jung, S.; McCrory, C. C. L.; Ferrer, I. M.; Peters, J. C.; Jaramillo, T. F. Benchmarking nanoparticulate metal oxide electrocatalysts for the alkaline water oxidation reaction. J. Mater. Chem. A 2016, 4, 3068–3076.

3

Ledendecker, M.; Clavel, G.; Antonietti, M.; Shalom, M. Highly porous materials as tunable electrocatalysts for the hydrogen and oxygen evolution reaction. Adv. Funct. Mater. 2015, 25, 393–399.

4

Jin, H. Y.; Wang, J.; Su, D. F.; Wei, Z. Z.; Pang, Z. F.; Wang, Y. In situ cobalt–cobalt oxide/n-doped carbon hybrids as superior bifunctional electrocatalysts for hydrogen and oxygen evolution. J. Am. Chem. Soc. 2015, 137, 2688–2694.

5

Xu, K.; Chen, P. Z.; Li, X. L.; Tong, Y.; Ding, H.; Wu, X. J.; Chu, W. S.; Peng, Z. M.; Wu, C. Z.; Xie, Y. Metallic nickel nitride nanosheets realizing enhanced electrochemical water oxidation. J. Am. Chem. Soc. 2015, 137, 4119–4125.

6

Fominykh, K.; Chernev, P.; Zaharieva, I.; Sicklinger, J.; Stefanic, G.; Döblinger, M.; Müller, A.; Pokharel, A.; Böcklein, S.; Scheu, C. et al. Iron-doped nickel oxide nanocrystals as highly efficient electrocatalysts for alkaline water splitting. ACS Nano 2015, 9, 5180–5188.

7

Lee, Y.; Suntivich, J.; May, K. J.; Perry, E. E.; Shao-Horn, Y. Synthesis and activities of rutile IrO2 and RuO2 nanoparticles for oxygen evolution in acid and alkaline solutions. J. Phys. Chem. Lett. 2012, 3, 399–404.

8

Zhao, Q.; Hao, G. Y.; Yuan, W.; Ma, N.; Li, J. P. Novel copper oxides oxygen evolving catalyst in situ for electrocatalytic water splitting. Electrochim. Acta 2015, 152, 280–285.

9

Xiao, C. L.; Lu, X. Y.; Zhao, C. Unusual synergistic effects upon incorporation of Fe and/or Ni into mesoporous Co3O4 for enhanced oxygen evolution. Chem. Commun. 2014, 50, 10122–10125.

10

Song, F.; Hu, X. L. Ultrathin cobalt-manganese layered double hydroxide is an efficient oxygen evolution catalyst. J. Am. Chem. Soc. 2014, 136, 16481–16484.

11

Liu, X.; Jia, H. X.; Sun, Z. J.; Chen, H. Y.; Xu, P.; Du, P. W. Nanostructured copper oxide electrodeposited from copper(II) complexes as an active catalyst for electrocatalytic oxygen evolution reaction. Electrochem. Commun. 2014, 46, 1–4.

12

Liu, S. S.; Bian, W. Y.; Yang, Z. R.; Tian, J. H.; Jin, C.; Shen, M.; Zhou, Z. F.; Yang, R. Z. A facile synthesis of CoFe2O4/biocarbon nanocomposites as efficient bi-functional electrocatalysts for the oxygen reduction and oxygen evolution reaction. J. Mater. Chem. A 2014, 2, 18012–18017.

13

Li, M.; Cheng, Q.; Wittman, R. M.; Peng, X. H.; Chan, C. K. Electrochemical and photoelectrochemical properties of the copper hydroxyphosphate mineral libethenite. ChemElectroChem 2014, 1, 663–672.

14

Fominykh, K.; Feckl, J. M.; Sicklinger, J.; Döblinger, M.; Böcklein, S.; Ziegler, J.; Peter, L.; Rathousky, J.; Scheidt, E. W.; Bein, T. et al. Ultrasmall dispersible crystalline nickel oxide nanoparticles as high-performance catalysts for electrochemical water splitting. Adv. Funct. Mater. 2014, 24, 3123–3129.

15

Yan, K.; Lafleur, T.; Chai, J. J.; Jarvis, C. Facile synthesis of thin NiFe-layered double hydroxides nanosheets efficient for oxygen evolution. Electrochem. Commun. 2016, 62, 24–28.

16

Hao, G. Y.; Wang, W.; Gao, G. F.; Zhao, Q.; Li, J. P. Preparation of nanostructured mesoporous NiCo2O4 and its electrocatalytic activities for water oxidation. J. Energy Chem. 2015, 24, 271–277.

17

Indra, A.; Menezes, P. W.; Sahraie, N. R.; Bergmann, A.; Das, C.; Tallarida, M.; Schmeiβer, D.; Strasser, P.; Driess, M. Unification of catalytic water oxidation and oxygen reduction reactions: Amorphous beat crystalline cobalt iron oxides. J. Am. Chem. Soc. 2014, 136, 17530–17536.

18

Du, S. C.; Ren, Z. Y.; Zhang, J.; Wu, J.; Xi, W.; Zhu, J. Q.; Fu, H. G. Co3O4 nanocrystal ink printed on carbon fiber paper as a large-area electrode for electrochemical water splitting. Chem. Commun. 2015, 51, 8066–8069.

19

Zhang, B.; Zheng, X. L.; Voznyy, O.; Comin, R.; Bajdich, M.; García-Melchor, M.; Han, L. L.; Xu, J. X.; Liu, M.; Zheng, L. R. et al. Homogeneously dispersed multimetal oxygen- evolving catalysts. Science 2016, 352, 333–337.

20

Gong, M.; Li, Y. G.; Wang, H. L.; Liang, Y. Y.; Wu, J. Z.; Zhou, J. G.; Wang, J.; Regier, T.; Wei, F.; Dai, H. J. An advanced Ni–Fe layered double hydroxide electrocatalyst for water oxidation. J. Am. Chem. Soc. 2013, 135, 8452–8455.

21

Wang, L. X.; Geng, J.; Wang, W. H.; Yuan, C.; Kuai, L.; Geng, B. Y. Facile synthesis of Fe/Ni bimetallic oxide solid-solution nanoparticles with superior electrocatalytic activity for oxygen evolution reaction. Nano Res. 2015, 8, 3815–3822.

22

Lu, X. Y.; Zhao, C. Electrodeposition of hierarchically structured three-dimensional nickel-iron electrodes for efficient oxygen evolution at high current densities. Nat. Commun. 2015, 6, 6616.

23

Gong, M.; Dai, H. J. A mini review of NiFe-based materials as highly active oxygen evolution reaction electrocatalysts. Nano Res. 2015, 8, 23–39.

24

Friebel, D.; Louie, M. W.; Bajdich, M.; Sanwald, K. E.; Cai, Y.; Wise, A. M.; Cheng, M. J.; Sokaras, D.; Weng, T. C.; Alonso-Mori, R. et al. Identification of highly active Fe sites in (Ni, Fe)OOH for electrocatalytic water splitting. J. Am. Chem. Soc. 2015, 137, 1305–1313.

25

Trotochaud, L.; Ranney, J. K.; Williams, K. N.; Boettcher, S. W. Solution-cast metal oxide thin film electrocatalysts for oxygen evolution. J. Am. Chem. Soc. 2012, 134, 17253–17261.

26

McCrory, C. C. L.; Jung, S.; Peters, J. C.; Jaramillo, T. F. Benchmarking heterogeneous electrocatalysts for the oxygen evolution reaction. J. Am. Chem. Soc. 2013, 135, 16977– 16987.

27

Juodkazis, K.; Juodkazytė, J.; Vilkauskaitė, R.; Jasulaitienė, V. Nickel surface anodic oxidation and electrocatalysis of oxygen evolution. J. Solid State Electr. 2008, 12, 1469–1479.

28

Doyle, R. L.; Lyons, M. E. G. Kinetics and mechanistic aspects of the oxygen evolution reaction at hydrous iron oxide films in base. J. Electrochem. Soc. 2013, 160, H142–H154.

File
nr-10-6-2096_ESM.pdf (3.1 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 23 August 2016
Revised: 08 November 2016
Accepted: 28 November 2016
Published: 01 March 2017
Issue date: June 2017

Copyright

© Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2016

Acknowledgements

Acknowledgements

We appreciate the financial funding supported by National Natural Science Foundation of China (No. 51402205), Scientific and Technological Innovation Programs of Higher Education Institutions in Shanxi (STIP) and Natural Science Foundation of Shanxi Province (No. 2015021058)

Return