Journal Home > Volume 14 , Issue 6

Two-dimensional (2D) van der Waals transition metal dichalcogenides (TMDs) are a new class of electronic materials offering tremendous opportunities for advanced technologies and fundamental studies. Similar to conventional semiconductors, substitutional doping is key to tailoring their electronic properties and enabling their device applications. Here, we review recent progress in doping methods and understanding of doping effects in group 6 TMDs (MX2, M = Mo, W; X = S, Se, Te), which are the most widely studied model 2D semiconductor system. Experimental and theoretical studies have shown that a number of different elements can substitute either M or X atoms in these materials and act as n- or p-type dopants. This review will survey the impact of substitutional doping on the electrical and optical properties of these materials, discuss open questions, and provide an outlook for further studies.


menu
Abstract
Full text
Outline
About this article

Substitutional doping in 2D transition metal dichalcogenides

Show Author's information Leyi Loh1,2,§Zhepeng Zhang1,§Michel Bosman2( )Goki Eda1,3,4( )
Department of Physics, National University of Singapore, 2 Science Drive 3, Singapore 117551, Singapore
Department of Materials Science and Engineering, National University of Singapore, 9 Engineering Drive 1, Singapore 117575, Singapore
Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore 117543, Singapore
Centre for Advanced 2D Materials, National University of Singapore, 2 Science Drive 2, Singapore 117542, Singapore

§ Leyi Loh and Zhepeng Zhang contributed equally to this work.

Abstract

Two-dimensional (2D) van der Waals transition metal dichalcogenides (TMDs) are a new class of electronic materials offering tremendous opportunities for advanced technologies and fundamental studies. Similar to conventional semiconductors, substitutional doping is key to tailoring their electronic properties and enabling their device applications. Here, we review recent progress in doping methods and understanding of doping effects in group 6 TMDs (MX2, M = Mo, W; X = S, Se, Te), which are the most widely studied model 2D semiconductor system. Experimental and theoretical studies have shown that a number of different elements can substitute either M or X atoms in these materials and act as n- or p-type dopants. This review will survey the impact of substitutional doping on the electrical and optical properties of these materials, discuss open questions, and provide an outlook for further studies.

Keywords: substitutional doping, transition metal dichalcogenide, two-dimensional semiconductor, acceptor, donor

References(155)

[1]
P. Avouris,; T. F. Heinz,; T. Low, 2D Materials; Cambridge University Press: Cambridge, 2017.
DOI
[2]
K. S. Novoselov,; A. Mishchenko,; A. Carvalho,; A. H. Castro Neto, 2D materials and van der Waals heterostructures. Science 2016, 353, aac9439.
[3]
S. Manzeli,; D. Ovchinnikov,; D. Pasquier,; O. V. Yazyev,; A. Kis, 2D transition metal dichalcogenides. Nat. Rev. Mater. 2017, 2, 17033.
[4]
A. Splendiani,; L. Sun,; Y. B. Zhang,; T. S. Li,; J. Kim,; C. Y. Chim,; G. Galli,; F. Wang, Emerging photoluminescence in monolayer MoS2. Nano Lett. 2010, 10, 1271-1275.
[5]
K. F. Mak,; C. Lee,; J. Hone,; J. Shan,; T. F. Heinz, Atomically thin MoS2: A new direct-gap semiconductor. Phys. Rev. Lett. 2010, 105, 136805.
[6]
B. Radisavljevic,; A. Radenovic,; J. Brivio,; V. Giacometti,; A. Kis, Single-layer MoS2 transistors. Nat. Nanotechnol. 2011, 6, 147-150.
[7]
H. Schmidt,; F. Giustiniano,; G. Eda, Electronic transport properties of transition metal dichalcogenide field-effect devices: Surface and interface effects. Chem. Soc. Rev. 2015, 44, 7715-7736.
[8]
Y. Yoon,; K. Ganapathi,; S. Salahuddin, How good can monolayer MoS2 transistors be? Nano Lett. 2011, 11, 3768-3773.
[9]
M. Chhowalla,; D. Jena,; H. Zhang, Two-dimensional semiconductors for transistors. Nat. Rev. Mater. 2016, 1, 16052.
[10]
S. B. Desai,; S. R. Madhvapathy,; A. B. Sachid,; J. P. Llinas,; Q. X. Wang,; G. H. Ahn,; G. Pitner,; M. J. Kim,; J. Bokor,; C. M. Hu, et al. MoS2 transistors with 1-nanometer gate lengths. Science 2016, 354, 99-102.
[11]
Q. A. Vu,; Y. S. Shin,; Y. R. Kim,; V. L. Nguyen,; W. T. Kang,; H. Kim,; D. H. Luong,; I. M. Lee,; K. Lee,; D. S. Ko, et al. Two-terminal floating-gate memory with van der Waals heterostructures for ultrahigh on/off ratio. Nat. Commun. 2016, 7, 12725.
[12]
B. Radisavljevic,; M. B. Whitwick,; A. Kis, Integrated circuits and logic operations based on single-layer MoS2. ACS Nano 2011, 5, 9934-9938.
[13]
F. H. L. Koppens,; T. Mueller,; P. Avouris,; A. C. Ferrari,; M. S. Vitiello,; M. Polini, Photodetectors based on graphene, other two- dimensional materials and hybrid systems. Nat. Nanotechnol. 2014, 9, 780-793.
[14]
O. Lopez-Sanchez,; D. Lembke,; M. Kayci,; A. Radenovic,; A. Kis, Ultrasensitive photodetectors based on monolayer MoS2. Nat. Nanotechnol. 2013, 8, 497-501.
[15]
G. Konstantatos, Current status and technological prospect of photodetectors based on two-dimensional materials. Nat. Commun. 2018, 9, 5266.
[16]
J. S. Ross,; P. Klement,; A. M. Jones,; N. J. Ghimire,; J. Q. Yan,; D. G. Mandrus,; T. Taniguchi,; K. Watanabe,; K. Kitamura,; W. Yao, et al. Electrically tunable excitonic light-emitting diodes based on monolayer WSe2 p-n junctions. Nat. Nanotechnol. 2014, 9, 268-272.
[17]
R. S. Sundaram,; M. Engel,; A. Lombardo,; R. Krupke,; A. C. Ferrari,; P. Avouris,; M. Steiner, Electroluminescence in single layer MoS2. Nano Lett. 2013, 13, 1416-1421.
[18]
J. Y. Wang,; I. Verzhbitskiy,; G. Eda, Electroluminescent devices based on 2D semiconducting transition metal dichalcogenides. Adv. Mater. 2018, 30, 1802687.
[19]
I. Datta,; S. H. Chae,; G. R. Bhatt,; M. A. Tadayon,; B. C. Li,; Y. L. Yu,; C. Park,; J. Park,; L. Y. Cao,; D. N. Basov, et al. Low-loss composite photonic platform based on 2D semiconductor monolayers. Nat. Photonics 2020, 14, 256-262.
[20]
H. S. Lee,; S. W. Min,; Y. G. Chang,; M. K. Park,; T. Nam,; H. Kim,; J. H. Kim,; S. Ryu,; S. Im, MoS2 nanosheet phototransistors with thickness-modulated optical energy gap. Nano Lett. 2012, 12, 3695-3700.
[21]
Z. P. Sun,; A. Martinez,; F. Wang, Optical modulators with 2D layered materials. Nat. Photonics 2016, 10, 227-238.
[22]
J. D. Zhou,; J. H. Lin,; X. W. Huang,; Y. Zhou,; Y. Chen,; J. Xia,; H. Wang,; Y. Xie,; H. M. Yu,; J. C. Lei, et al. A library of atomically thin metal chalcogenides. Nature 2018, 556, 355-359.
[23]
J. Gao,; Y. D. Kim,; L. B. Liang,; J. C. Idrobo,; P. Chow,; J. W. Tan,; B. C. Li,; L. Li,; B. G. Sumpter,; T. M. Lu, et al. Transition-metal substitution doping in synthetic atomically thin semiconductors. Adv. Mater. 2016, 28, 9735-9743.
[24]
T. Y. Zhang,; K. Fujisawa,; F. Zhang,; M. Z. Liu,; M. C. Lucking,; R. N. Gontijo,; Y. Lei,; H. Liu,; K. Crust,; T. Granzier-Nakajima, et al. Universal in situ substitutional doping of transition metal dichalcogenides by liquid-phase precursor-assisted synthesis. ACS Nano 2020, 14, 4326-4335.
[25]
S. Tongay,; J. Zhou,; C. Ataca,; J. Liu,; J. S. Kang,; T. S. Matthews,; L. You,; J. B. Li,; J. C. Grossman,; J. Q. Wu, Broad-range modulation of light emission in two-dimensional semiconductors by molecular physisorption gating. Nano Lett. 2013, 13, 2831-2836.
[26]
S. Mouri,; Y. Miyauchi,; K. Matsuda, Tunable photoluminescence of monolayer MoS2 via chemical doping. Nano Lett. 2013, 13, 5944-5948.
[27]
D. Kiriya,; M. Tosun,; P. D. Zhao,; J. S. Kang,; A. Javey, Air-stable surface charge transfer doping of MoS2 by benzyl viologen. J. Am. Chem. Soc. 2014, 136, 7853-7856.
[28]
Y. Jung,; Y. Zhou,; J. J. Cha, Intercalation in two-dimensional transition metal chalcogenides. Inorg. Chem. Front. 2016, 3, 452-463.
[29]
A. Chanana,; S. Mahapatra, Theoretical insights to niobium-doped monolayer MoS2-gold contact. IEEE Trans. Electron Dev. 2015, 62, 2346-2351.
[30]
X. Q. Lin,; J. Ni, Charge and magnetic states of Mn-, Fe-, and Co-doped monolayer MoS2. J. Appl. Phys. 2014, 116, 044311.
[31]
M. Luo,; Y. H. Shen,; J. H. Chu, First-principles study of the magnetism of Ni-doped MoS2 monolayer. Jpn. J. Appl. Phys. 2016, 55, 093001.
[32]
K. Dolui,; I. Rungger,; C. D. Pemmaraju,; S. Sanvito, Possible doping strategies for MoS2 monolayers: An ab initio study. Phys. Rev. B 2013, 88, 075420.
[33]
X. Zhao,; P. Chen,; C. X. Xia,; T. X. Wang,; X. Q. Dai, Electronic and magnetic properties of n-type and p-doped MoS2 monolayers. RSC Adv. 2016, 6, 16772-16778.
[34]
X. L. Fan,; Y. R. An,; W. J. Guo, Ferromagnetism in transitional metal-doped MoS2 monolayer. Nanoscale Res. Lett. 2016, 11, 154.
[35]
I. Williamson,; S. S. Li,; A. Correa Hernandez,; M. Lawson,; Y. Chen,; L. Li, Structural, electrical, phonon, and optical properties of Ti- and V-doped two-dimensional MoS2. Chem. Phys. Lett. 2017, 674, 157-163.
[36]
X. Zhao,; C. X. Xia,; T. X. Wang,; X. Q. Dai, Electronic and magnetic properties of X-doped (X = Ti, Zr, Hf) tungsten disulphide monolayer. J. Alloys Compd. 2016, 654, 574-579.
[37]
A. Carvalho,; A. H. C. Neto, Donor and acceptor levels in semiconducting transition-metal dichalcogenides. Phys. Rev. B 2014, 89, 081406.
[38]
H. L. Duan,; P. Guo,; C. Wang,; H. Tan,; W. Hu,; W. S. Yan,; C. Ma,; L. Cai,; L. Song,; W. H. Zhang, et al. Beating the exclusion rule against the coexistence of robust luminescence and ferromagnetism in chalcogenide monolayers. Nat. Commun. 2019, 10, 1584.
[39]
E. Z. Xu,; H. M. Liu,; K. Park,; Z. Li,; Y. Losovyj,; M. Starr,; M. Werbianskyj,; H. A. Fertig,; S. X. Zhang, P-type transition-metal doping of large-area MoS2 thin films grown by chemical vapor deposition. Nanoscale 2017, 9, 3576-3584.
[40]
Y. C. Lin,; D. O. Dumcenco,; H. P. Komsa,; Y. Niimi,; A. V. Krasheninnikov,; Y. S. Huang,; K. Suenaga, Properties of individual dopant atoms in single-layer MoS2: Atomic structure, migration, and enhanced reactivity. Adv. Mater. 2014, 26, 2857-2861.
[41]
S. Y. Wang,; T. S. Ko,; C. C. Huang,; D. Y. Lin,; Y. S. Huang, Optical and electrical properties of MoS2 and Fe-doped MoS2. Jpn. J. Appl. Phys. 2014, 53, 04EH07.
[42]
M. Z. Zhong,; C. Shen,; L. Huang,; H. X. Deng,; G. Z. Shen,; H. Z. Zheng,; Z. M. Wei,; J. B. Li, Electronic structure and exciton shifts in Sb-doped MoS2 monolayer. npj 2D Mater. Appl. 2019, 3, 1.
[43]
Z. C. Xiang,; Z. Zhang,; X. J. Xu,; Q. Zhang,; Q. B. Wang,; C. W. Yuan, Room-temperature ferromagnetism in Co doped MoS2 sheets. Phys. Chem. Chem. Phys. 2015, 17, 15822-15828.
[44]
S. C. Fu,; K. Kang,; K. Shayan,; A. Yoshimura,; S. Dadras,; X. T. Wang,; L. H. Zhang,; S. W. Chen,; N. Liu,; A. Jindal, et al. Enabling room temperature ferromagnetism in monolayer MoS2 via in situ iron- doping. Nat. Commun. 2020, 11, 2034.
[45]
M. Habib,; Z. Muhammad,; R. Khan,; C. Q. Wu,; Z. ur Rehman,; Y. Zhou,; H. J. Liu,; L. Song, Ferromagnetism in CVT grown tungsten diselenide single crystals with nickel doping. Nanotechnology 2018, 29, 115701.
[46]
J. Wilson,; A. D. Yoffe, The transition metal dichalcogenides discussion and interpretation of the observed optical, electrical and structural properties. Adv. Phys. 1969, 18, 193-335.
[47]
L. H. Brixner, Preparation and properties of the single crystalline AB2-type selenides and tellurides of niobium, tantalum, molybdenum and tungsten. J. Inorg. Nucl. Chem. 1962, 24, 257-263.
[48]
W. Hicks, Semiconducting behavior of substituted tungsten diselenide and its analogues. J. Electrochem. Soc. 1964, 111, 1058-1065.
[49]
P. Luo,; F. W. Zhuge,; Q. F. Zhang,; Y. Q. Chen,; L. Lv,; Y. Huang,; H. Q. Li,; T. Y. Zhai, Doping engineering and functionalization of two-dimensional metal chalcogenides. Nanoscale Horiz. 2019, 4, 26-51.
[50]
K. H. Zhang,; J. Robinson, Doping of two-dimensional semiconductors: A rapid review and outlook. MRS Adv. 2019, 4, 2743-2757.
[51]
A. Yoon,; Z. Lee, Synthesis and properties of two dimensional doped transition metal dichalcogenides. Appl. Microsc. 2017, 47, 19-28.
[52]
T. Cheiwchanchamnangij,; W. R. L. Lambrecht, Quasiparticle band structure calculation of monolayer, bilayer, and bulk MoS2. Phys. Rev. B 2012, 85, 205302.
[53]
A. Molina-Sánchez,; L. Wirtz, Phonons in single-layer and few-layer MoS2 and WS2. Phys. Rev. B 2011, 84, 155413.
[54]
A. H. Reshak,; S. Auluck, Calculated optical properties of 2H-MoS2 intercalated with lithium. Phys. Rev. B 2003, 68, 125101.
[55]
X. L. Chen,; Z. F. Wu,; S. G. Xu,; L. Wang,; R. Huang,; Y. Han,; W. G. Ye,; W. Xiong,; T. Y. Han,; G. Long, et al. Probing the electron states and metal-insulator transition mechanisms in molybdenum disulphide vertical heterostructures. Nat. Commun. 2015, 6, 6088.
[56]
H. P. Komsa,; A. V. Krasheninnikov, Effects of confinement and environment on the electronic structure and exciton binding energy of MoS2 from first principles. Phys. Rev. B 2012, 86, 241201.
[57]
A. Chernikov,; T. C. Berkelbach,; H. M. Hill,; A. Rigosi,; Y. L. Li,; O. B. Aslan,; D. R. Reichman,; M. S. Hybertsen,; T. F. Heinz, Exciton binding energy and nonhydrogenic Rydberg series in monolayer WS2. Phys. Rev. Lett. 2014, 113, 076802.
[58]
M. M. Ugeda,; A. J. Bradley,; S. F. Shi,; F. H. da Jornada,; Y. Zhang,; D. Y. Qiu,; W. Ruan,; S. K. Mo,; Z. Hussain,; Z. X. Shen, et al. Giant bandgap renormalization and excitonic effects in a monolayer transition metal dichalcogenide semiconductor. Nat. Mater. 2014, 13, 1091-1095.
[59]
J. B. Li,; S. H. Wei,; L. W. Wang, Stability of the DX- center in GaAs quantum dots. Phys. Rev. Lett. 2005, 94, 185501.
[60]
J. H. Yang,; B. I. Yakobson, Dimensionality-suppressed chemical doping in 2D semiconductors: The cases of phosphorene, MoS2, and ReS2 from first-principles. 2017, arXiv:1711.05094. arXiv.org e-Print archive. https://arxiv.org/abs/1711.05094 (accessed Nov 14, 2017).
[61]
W. Götz,; N. M. Johnson,; C. Chen,; H. Liu,; C. Kuo,; W. Imler, Activation energies of Si donors in GaN. Appl. Phys. Lett. 1996, 68, 3144-3146.
[62]
A. Rockett,; D. D. Johnson,; S. V. Khare,; B. R. Tuttle, Prediction of dopant ionization energies in silicon: The importance of strain. Phys. Rev. B 2003, 68, 233208.
[63]
S. Lu,; C. Li,; Y. F. Zhao,; Y. Y. Gong,; L. Y. Niu,; X. J. Liu, Tunable redox potential of nonmetal doped monolayer MoS2: First principle calculations. Appl. Surf. Sci. 2016, 384, 360-367.
[64]
A. M. Hu,; L. L. Wang,; B. Meng,; W. Z. Xiao, Ab initio study of magnetism in nonmagnetic metal substituted monolayer MoS2. Solid State Commun. 2015, 220, 67-71.
[65]
J. Y. Noh,; H. Kim,; M. Park,; Y. S. Kim, Deep-to-shallow level transition of Re and Nb dopants in monolayer MoS2 with dielectric environments. Phys. Rev. B 2015, 92, 115431.
[66]
K. H. Zhang,; B. M. Bersch,; J. Joshi,; R. Addou,; C. R. Cormier,; C. X. Zhang,; K. Xu,; N. C. Briggs,; K. Wang,; S. Subramanian, et al. Tuning the electronic and photonic properties of monolayer MoS2 via in situ rhenium substitutional doping. Adv. Funct. Mater. 2018, 28, 1706950.
[67]
H. Gao,; J. Suh,; M. C. Cao,; A. Y. Joe,; F. Mujid,; K. H. Lee,; S. E. Xie,; P. Poddar,; J. U. Lee,; K. Kang, et al. Tuning electrical conductance of MoS2 monolayers through substitutional doping. Nano Lett. 2020, 20, 4095-4101.
[68]
V. Kochat,; A. Apte,; J. A. Hachtel,; H. Kumazoe,; A. Krishnamoorthy,; S. Susarla,; J. C. Idrobo,; F. Shimojo,; P. Vashishta,; R. Kalia, et al. Re doping in 2D transition metal dichalcogenides as a new route to tailor structural phases and induced magnetism. Adv. Mater. 2017, 29, 1703754.
[69]
K. H. Zhang,; S. M. Feng,; J. J. Wang,; A. Azcatl,; N. Lu,; R. Addou,; N. Wang,; C. J. Zhou,; J. Lerach,; V. Bojan, et al. Manganese doping of monolayer MoS2: The substrate is critical. Nano Lett. 2015, 15, 6586-6591.
[70]
Z. Y. Cai,; T. Z. Shen,; Q. Zhu,; S. M. Feng,; Q. M. Yu,; J. M. Liu,; L. Tang,; Y. Zhao,; J. W. Wang,; B. L. Liu, et al. Dual-additive assisted chemical vapor deposition for the growth of Mn-doped 2D MoS2 with tunable electronic properties. Small 2020, 16, 1903181.
[71]
C. Huang,; Y. B. Jin,; W. Y. Wang,; L. Tang,; C. Y. Song,; F. X. Xiu, Manganese and chromium doping in atomically thin MoS2. J. Semicond. 2017, 38, 033004.
[72]
Y. C. Cheng,; Z. Y. Zhu,; W. B. Mi,; Z. B. Guo,; U. Schwingenschlögl, Prediction of two-dimensional diluted magnetic semiconductors: Doped monolayer MoS2 systems. Phys. Rev. B 2013, 87, 100401.
[73]
Q. Li,; X. X. Zhao,; L. J. Deng,; Z. T. Shi,; S. Liu,; Q. L. Wei,; L. B. Zhang,; Y. C. Cheng,; L. Zhang,; H. P. Lu, et al. Enhanced valley Zeeman splitting in Fe-doped monolayer MoS2. ACS Nano 2020, 14, 4636-4645.
[74]
S. C. Lu,; J. P. Leburton, Electronic structures of defects and magnetic impurities in MoS2 monolayers. Nanoscale Res. Lett. 2014, 9, 676.
[75]
M. M. Liu,; S. C. Wei,; S. Shahi,; H. N. Jaiswal,; P. Paletti,; S. Fathipour,; M. Remskar,; J. Jiao,; W. Hwang,; F. Yao, et al. Enhanced carrier transport by transition metal doping in WS2 field effect transistors. Nanoscale, in press, .
[76]
B. Li,; L. Huang,; M. Z. Zhong,; N. J. Huo,; Y. T. Li,; S. X. Yang,; C. Fan,; J. H. Yang,; W. P. Hu,; Z. M. Wei, et al. Synthesis and transport properties of large-scale alloy Co0.16Mo0.84S2 bilayer nanosheets. ACS Nano 2015, 9, 1257-1262.
[77]
A. M. Hu,; L. L. Wang,; W. Z. Xiao,; B. Meng, Electronic structures and magnetic properties in Cu-doped two-dimensional dichalcogenides. Phys. E: Low-Dimens. Syst. Nanostruct. 2015, 73, 69-75.
[78]
W. S. Yun,; J. Lee, Unexpected strong magnetism of Cu doped single-layer MoS2 and its origin. Phys. Chem. Chem. Phys. 2014, 16, 8990-8996.
[79]
M. G. Li,; J. D. Yao,; X. X. Wu,; S. C. Zhang,; B. R. Xing,; X. Y. Niu,; X. Y. Yan,; Y. Yu,; Y. L. Liu,; Y. W. Wang, P-type doping in large- area monolayer MoS2 by chemical vapor deposition. ACS Appl. Mater. Interfaces 2020, 12, 6276-6282.
[80]
Y. Y. Jin,; Z. Y. Zeng,; Z. W. Xu,; Y. C. Lin,; K. X. Bi,; G. L. Shao,; T. S. Hu,; S. S. Wang,; S. S. Li,; K. Suenaga, et al. Synthesis and transport properties of degenerate p-type Nb-doped WS2 monolayers. Chem. Mater. 2019, 31, 3534-3541.
[81]
S. Sasaki,; Y. Kobayashi,; Z. Liu,; K. Suenaga,; Y. Maniwa,; Y. Miyauchi,; Y. Miyata, Growth and optical properties of Nb-doped WS2 monolayers. Appl. Phys. Express 2016, 9, 071201.
[82]
J. Suh,; T. E. Park,; D. Y. Lin,; D. Y. Fu,; J. Park,; H. J. Jung,; Y. B. Chen,; C. Ko,; C. Jang,; Y. H. Sun, et al. Doping against the native propensity of MoS2: Degenerate hole doping by cation substitution. Nano Lett. 2014, 14, 6976-6982.
[83]
Z. Y. Qin,; L. Loh,; J. Y. Wang,; X. M. Xu,; Q. Zhang,; B. Haas,; C. Alvarez,; H. Okuno,; J. Z. Yong,; T. Schultz, et al. Growth of Nb- doped monolayer WS2 by liquid-phase precursor mixing. ACS Nano 2019, 13, 10768-10775.
[84]
S. S. Li,; Y. C. Lin,; W. Zhao,; J. Wu,; Z. Wang,; Z. H. Hu,; Y. D. Shen,; D. M. Tang,; J. Y. Wang,; Q. Zhang, et al. Vapour-liquid-solid growth of monolayer MoS2 nanoribbons. Nat. Mater. 2018, 17, 535-542.
[85]
F. Zhang,; B. Y. Zheng,; A. Sebastian,; H. Olson,; M. Z. Liu,; K. Fujisawa,; Y. T. H. Pham,; V. O. Jimenez,; V. Kalappattil,; L. X. Miao, et al. Monolayer vanadium-doped tungsten disulfide: A room- temperature dilute magnetic semiconductor. 2020, arXiv:2005.01965. arXiv.org e-Print archive. https://arxiv.org/abs/2005.01965 (accessed May 5, 2020).
[86]
S. J. Yun,; D. L. Duong,; D. M. Ha,; K. Singh,; T. L. Phan,; W. Choi,; Y. M. Kim,; Y. H. Lee, Ferromagnetic order at room temperature in monolayer WSe2 semiconductor via vanadium dopant. Adv. Sci. 2020, 7, 1903076.
[87]
P. Mallet,; F. Chiapello,; H. Okuno,; H. Boukari,; M. Jamet,; J. Y. Veuillen, Bound hole states associated to individual vanadium atoms incorporated into monolayer WSe2. Phys. Rev. Lett. 2020, 125, 036802.
[88]
C. K. Shu,; W. H. Lee,; Y. C. Pan,; C. C. Chen,; H. C. Lin,; J. Ou,; W. H. Chen,; W. K. Chen,; M. C. Lee, Optical and electrical investigations of isoelectronic In-doped GaN films. Solid State Commun. 2000, 114, 291-293.
[89]
M. K. Lee,; T. H. Chiu,; A. Dayem,; E. Agyekum, Isoelectronic doping in GaAs epilayers grown by molecular beam epitaxy. Appl. Phys. Lett. 1988, 53, 2653-2655.
[90]
W. Walukiewicz, Dislocation density reduction by isoelectronic impurities in semiconductors. Appl. Phys. Lett. 1989, 54, 2009-2011.
[91]
Y. Y. Ma,; B. B. Tang,; W. T. Lian,; C. Y. Wu,; X. M. Wang,; H. X. Ju,; C. F. Zhu,; F. J. Fan,; T. Chen, Efficient defect passivation of Sb2Se3 film by tellurium doping for high performance solar cells. J. Mater. Chem. A 2020, 8, 6510-6516.
[92]
P. K. Bhattacharya,; S. Dhar,; P. Berger,; F. Y. Juang, Low defect densities in molecular beam epitaxial GaAs achieved by isoelectronic In doping. Appl. Phys. Lett. 1986, 49, 470-472.
[93]
X. F. Li,; A. A. Puretzky,; X. H. Sang,; S. KC,; M. K. Tian,; F. Ceballos,; M. Mahjouri-Samani,; K. Wang,; R. R. Unocic,; H. Zhao, et al. Suppression of defects and deep levels using isoelectronic tungsten substitution in monolayer MoSe2. Adv. Funct. Mater. 2017, 27, 1603850.
[94]
B. Huang,; M. Yoon,; B. G. Sumpter,; S. H. Wei,; F. Liu, Alloy engineering of defect properties in semiconductors: Suppression of deep levels in transition-metal dichalcogenides. Phys. Rev. Lett. 2015, 115, 126806.
[95]
X. F. Li,; M. W. Lin,; L. Basile,; S. M. Hus,; A. A. Puretzky,; J. Lee,; Y. C. Kuo,; L. Y. Chang,; K. Wang,; J. C. Idrobo, et al. Isoelectronic tungsten doping in monolayer MoSe2 for carrier type modulation. Adv. Mater. 2016, 28, 8240-8247.
[96]
H. Cai,; B. Chen,; M. Blei,; S. L. Y. Chang,; K. D. Wu,; H. L. Zhuang,; S. Tongay, Abnormal band bowing effects in phase instability crossover region of GaSe1-xTex nanomaterials. Nat. Commun. 2018, 9, 1927.
[97]
J. Ma,; S. H. Wei, Bowing of the defect formation energy in semiconductor alloys. Phys. Rev. B 2013, 87, 241201.
[98]
S. H. Wei,; S. B. Zhang,; A. Zunger, First-principles calculation of band offsets, optical bowings, and defects in CdS, CdSe, CdTe, and their alloys. J. Appl. Phys. 2000, 87, 1304-1311.
[99]
J. G. Song,; G. H. Ryu,; S. J. Lee,; S. Sim,; C. W. Lee,; T. Choi,; H. Jung,; Y. Kim,; Z. Lee,; J. M. Myoung, et al. Controllable synthesis of molybdenum tungsten disulfide alloy for vertically composition-controlled multilayer. Nat. Commun. 2015, 6, 7817.
[100]
A. Azizi,; Y. Wang,; G. Stone,; A. L. Elias,; Z. Lin,; M. Terrones,; V. H. Crespi,; N. Alem, Defect coupling and sub-angstrom structural distortions in W1-xMoxS2 monolayers. Nano Lett. 2017, 17, 2802-2808.
[101]
J. Karthikeyan,; H. P. Komsa,; M. Batzill,; A. V. Krasheninnikov, Which transition metal atoms can be embedded into two-dimensional molybdenum dichalcogenides and add magnetism? Nano Lett. 2019, 19, 4581-4587.
[102]
D. J. Lewis,; A. A. Tedstone,; X. L. Zhong,; E. A. Lewis,; A. Rooney,; N. Savjani,; J. R. Brent,; S. J. Haigh,; M. G. Burke,; C. A. Muryn, et al. Thin films of molybdenum disulfide doped with chromium by aerosol-assisted chemical vapor deposition (AACVD). Chem. Mater. 2015, 27, 1367-1374.
[103]
F. Jellinek, The structures of the chromium sulphides. Acta Cryst. 1957, 10, 620-628.
[104]
A. A. Tedstone,; D. J. Lewis,; P. O’Brien, Synthesis, properties, and applications of transition metal-doped layered transition metal dichalcogenides. Chem. Mater. 2016, 28, 1965-1974.
[105]
X. M. Liu,; X. Zhao,; X. Ma,; N. H. Wu,; Q. Q. Xin,; T. X. Wang, Effect of strain on electronic and magnetic properties of n-type Cr-doped WSe2 monolayer. Phys. E: Low-Dimens. Syst. Nanostruct. 2017, 87, 6-9.
[106]
A. Azcatl,; X. Y. Qin,; A. Prakash,; C. X. Zhang,; L. X. Cheng,; Q. X. Wang,; N. Lu,; M. J. Kim,; J. Kim,; K. Cho, et al. Covalent nitrogen doping and compressive strain in MoS2 by remote N2 plasma exposure. Nano Lett. 2016, 16, 5437-5443.
[107]
A. Nipane,; D. Karmakar,; N. Kaushik,; S. Karande,; S. Lodha, Few- layer MoS2 p-type devices enabled by selective doping using low energy phosphorus implantation. ACS Nano 2016, 10, 2128-2137.
[108]
L. M. Yang,; K. Majumdar,; H. Liu,; Y. C. Du,; H. Wu,; M. Hatzistergos,; P. Y. Hung,; R. Tieckelmann,; W. Tsai,; C. Hobbs, et al. Chloride molecular doping technique on 2D materials: WS2 and MoS2. Nano Lett. 2014, 14, 6275-6280.
[109]
S. Y. Li,; X. Q. Chen,; F. M. Liu,; Y. F. Chen,; B. Y. Liu,; W. J. Deng,; B. X. An,; F. H. Chu,; G. Q. Zhang,; S. L. Li, et al. Enhanced performance of a CVD MoS2 photodetector by chemical in situ n-type doping. ACS Appl. Mater. Interfaces 2019, 11, 11636-11644.
[110]
Y. J. Gong,; Z. Liu,; A. R. Lupini,; G. Shi,; J. H. Lin,; S. Najmaei,; Z. Lin,; A. L. Elías,; A. Berkdemir,; G. You, et al. Band gap engineering and layer-by-layer mapping of selenium-doped molybdenum disulfide. Nano Lett. 2014, 14, 442-449.
[111]
B. Y. Zheng,; C. Ma,; D. Li,; J. Y. Lan,; Z. Zhang,; X. X. Sun,; W. H. Zheng,; T. F. Yang,; C. G. Zhu,; G. Ouyang, et al. Band alignment engineering in two-dimensional lateral heterostructures. J. Am. Chem. Soc. 2018, 140, 11193-11197.
[112]
P. L. Li,; J. Cui,; J. D. Zhou,; D. Guo,; Z. Z. Zhao,; J. Yi,; J. Fan,; Z. Q. Ji,; X. N. Jing,; F. M. Qu, et al. Phase transition and superconductivity enhancement in Se-substituted MoTe2 thin films. Adv. Mater. 2019, 31, 1904641.
[113]
J. Pető,; T. Ollár,; P. Vancsó,; Z. I. Popov,; G. Z. Magda,; G. Dobrik,; C. Hwang,; P. B. Sorokin,; L. Tapasztó, Spontaneous doping of the basal plane of MoS2 single layers through oxygen substitution under ambient conditions. Nat. Chem. 2018, 10, 1246-1251.
[114]
Q. Cao,; Y. W. Dai,; J. Xu,; L. Chen,; H. Zhu,; Q. Q. Sun,; D. W. Zhang, Realizing stable p-type transporting in two-dimensional WS2 films. ACS Appl. Mater. Interfaces 2017, 9, 18215-18221.
[115]
Q. Yang,; Z. G. Wang,; L. C. Dong,; W. B. Zhao,; Y. Jin,; L. Fang,; B. S. Hu,; M. D. Dong, Activating MoS2 with super-high nitrogen- doping concentration as efficient catalyst for hydrogen evolution reaction. J. Phys. Chem. C 2019, 123, 10917-10925.
[116]
L. E. Conroy,; K. C. Park, Electrical properties of the group IV disulfides, titanium disulfide, zirconium disulfide, hafnium disulfide and tin disulfide. Inorg. Chem. 1968, 7, 459-463.
[117]
Z. P. Jin,; Z. Cai,; X. S. Chen,; D. C. Wei, Abnormal n-type doping effect in nitrogen-doped tungsten diselenide prepared by moderate ammonia plasma treatment. Nano Res. 2018, 11, 4923-4930.
[118]
S. Qin,; W. W. Lei,; D. Liu,; Y. Chen, In-situ and tunable nitrogen- doping of MoS2 nanosheets. Sci. Rep. 2014, 4, 7582.
[119]
A. Khosravi,; R. Addou,; C. M. Smyth,; R. Y. Yue,; C. R. Cormier,; J. Kim,; C. L. Hinkle,; R. M. Wallace, Covalent nitrogen doping in molecular beam epitaxy-grown and bulk WSe2. APL Mater. 2018, 6, 026603.
[120]
H. L. Li,; X. D. Duan,; X. P. Wu,; X. J. Zhuang,; H. Zhou,; Q. L. Zhang,; X. L. Zhu,; W. Hu,; P. Y. Ren,; P. F. Guo, et al. Growth of alloy MoS2xSe2(1-x) nanosheets with fully tunable chemical compositions and optical properties. J. Am. Chem. Soc. 2014, 136, 3756-3759.
[121]
X. D. Duan,; C. Wang,; Z. Fan,; G. L. Hao,; L. Z. Kou,; U. Halim,; H. L. Li,; X. P. Wu,; Y. C. Wang,; J. H. Jiang, et al. Synthesis of WS2xSe2-2x alloy nanosheets with composition-tunable electronic properties. Nano Lett. 2016, 16, 264-269.
[122]
I. A. Verzhbitskiy,; D. Voiry,; M. Chhowalla,; G. Eda, Disorder- driven two-dimensional quantum phase transitions in LixMoS2. 2D Mater. 2020, 7, 035013.
[123]
S. Barja,; S. Refaely-Abramson,; B. Schuler,; D. Y. Qiu,; A. Pulkin,; S. Wickenburg,; H. Ryu,; M. M. Ugeda,; C. Kastl,; C. Chen, et al. Identifying substitutional oxygen as a prolific point defect in monolayer transition metal dichalcogenides. Nat. Commun. 2019, 10, 3382.
[124]
W. T. Su,; L. Jin,; X. D. Qu,; D. X. Huo,; L. Yang, Defect passivation induced strong photoluminescence enhancement of rhombic monolayer MoS2. Phys. Chem. Chem. Phys. 2016, 18, 14001-14006.
[125]
H. B. Shu,; Y. H. Li,; X. H. Niu,; J. L. Wang, Greatly enhanced optical absorption of a defective MoS2 monolayer through oxygen passivation. ACS Appl. Mater. Interfaces 2016, 8, 13150-13156.
[126]
H. P. Komsa,; J. Kotakoski,; S. Kurasch,; O. Lehtinen,; U. Kaiser,; A. V. Krasheninnikov, Two-dimensional transition metal dichalcogenides under electron irradiation: Defect production and doping. Phys. Rev. Lett. 2012, 109, 035503.
[127]
S. KC,; R. C. Longo,; R. M. Wallace,; K. Cho, Surface oxidation energetics and kinetics on MoS2 monolayer. J. Appl. Phys. 2015, 117, 135301.
[128]
M. V. Bollinger,; J. V. Lauritsen,; K. W. Jacobsen,; J. K. Nørskov,; S. Helveg,; F. Besenbacher, One-dimensional metallic edge states in MoS2. Phys. Rev. Lett. 2001, 87, 196803.
[129]
Z. L. Hu,; J. Avila,; X. Y. Wang,; J. F. Leong,; Q. Zhang,; Y. P. Liu,; M. C. Asensio,; J. P. Lu,; A. Carvalho,; C. H. Sow, et al. The role of oxygen atoms on excitons at the edges of monolayer WS2. Nano Lett. 2019, 19, 4641-4650.
[130]
M. R. Islam,; N. Kang,; U. Bhanu,; H. P. Paudel,; M. Erementchouk,; L. Tetard,; M. N. Leuenberger,; S. I. Khondaker, Tuning the electrical property via defect engineering of single layer MoS2 by oxygen plasma. Nanoscale 2014, 6, 10033-10039.
[131]
N. Kang,; H. P. Paudel,; M. N. Leuenberger,; L. Tetard,; S. I. Khondaker, Photoluminescence quenching in single-layer MoS2 via oxygen plasma treatment. J. Phys. Chem. C 2014, 118, 21258-21263.
[132]
S. Kim,; M. S. Choi,; D. S. Qu,; C. H. Ra,; X. C. Liu,; M. Kim,; Y. J. Song,; W. J. Yoo, Effects of plasma treatment on surface properties of ultrathin layered MoS2. 2D Mater. 2016, 3, 035002.
[133]
X. Z. Tian,; D. S. Kim,; S. Z. Yang,; C. J. Ciccarino,; Y. J. Gong,; Y. Yang,; Y. Yang,; B. Duschatko,; Y. K. Yuan,; P. M. Ajayan, et al. Correlating the three-dimensional atomic defects and electronic properties of two-dimensional transition metal dichalcogenides. Nat. Mater. 2020, 19, 867-873.
[134]
M. Bosman,; V. J. Keast,; J. L. García-Muñoz,; A. J. D’Alfonso,; S. D. Findlay,; L. J. Allen, Two-dimensional mapping of chemical information at atomic resolution. Phys. Rev. Lett. 2007, 99, 086102.
[135]
K. Suenaga,; M. Koshino, Atom-by-atom spectroscopy at graphene edge. Nature 2010, 468, 1088-1090.
[136]
J. Zribi,; L. Khalil,; B. Y. Zheng,; J. Avila,; D. Pierucci,; T. Brulé,; J. Chaste,; E. Lhuillier,; M. C. Asensio,; A. L. Pan, et al. Strong interlayer hybridization in the aligned SnS2/WSe2 hetero-bilayer structure. npj 2D Mater. Appl. 2019, 3, 27.
[137]
E. Ponomarev,; Á. Pásztor,; A. Waelchli,; A. Scarfato,; N. Ubrig,; C. Renner,; A. F. Morpurgo, Hole transport in exfoliated monolayer MoS2. ACS Nano 2018, 12, 2669-2676.
[138]
T. P. Darlington,; C. Carmesin,; M. Florian,; E. Yanev,; O. Ajayi,; J. Ardelean,; D. A. Rhodes,; A. Ghiotto,; A. Krayev,; K. Watanabe, et al. Imaging strain-localized excitons in nanoscale bubbles of monolayer WSe2 at room temperature. Nat. Nanotechnol., in press, .
[139]
B. Schuler,; K. A. Cochrane,; C. Kastl,; E. Barnard,; E. Wong,; N. Borys,; A. M. Schwartzberg,; D. F. Ogletree,; F. J. G. de Abajo,; A. Weber- Bargioni, Electrically driven photon emission from individual atomic defects in monolayer WS2. 2019, arXiv:1910.04612. arXiv.org e-Print archive. https://arxiv.org/abs/1910.04612 (accessed Oct 10, 2019).
[140]
P. Patoka,; G. Ulrich,; A. E. Nguyen,; L. Bartels,; P. A. Dowben,; V. Turkowski,; T. S. Rahman,; P. Hermann,; B. Kästner,; A. Hoehl, et al. Nanoscale plasmonic phenomena in CVD-grown MoS2 monolayer revealed by ultra-broadband synchrotron radiation based nano-FTIR spectroscopy and near-field microscopy. Opt. Express 2016, 24, 1154-1164.
[141]
P. G. Spizzirri,; J. H. Fang,; S. Rubanov,; E. Gauja,; S. Prawer, Nano-Raman spectroscopy of silicon surfaces. 2010, arXiv:1002.2692. arXiv.org e-Print archive. https://arxiv.org/abs/1002.2692 (accessed Feb 13, 2010).
[142]
D. Edelberg,; D. Rhodes,; A. Kerelsky,; B. Kim,; J. Wang,; A. Zangiabadi,; C. Kim,; A. Abhinandan,; J. Ardelean,; M. Scully, et al. Approaching the intrinsic limit in transition metal diselenides via point defect control. Nano Lett. 2019, 19, 4371-4379.
[143]
S. Shree,; A. George,; T. Lehnert,; C. Neumann,; M. Benelajla,; C. Robert,; X. Marie,; K. Watanabe,; T. Taniguchi,; U. Kaiser, et al. High optical quality of MoS2 monolayers grown by chemical vapor deposition. 2D Mater. 2019, 7, 015011.
[144]
S. Strauf,; P. Michler,; M. Klude,; D. Hommel,; G. Bacher,; A. Forchel, Quantum optical studies on individual acceptor bound excitons in a semiconductor. Phys. Rev. Lett. 2002, 89, 177403.
[145]
Y. J. Zheng,; Y. F. Chen,; Y. L. Huang,; P. K. Gogoi,; M. Y. Li,; L. J. Li,; P. E. Trevisanutto,; Q. X. Wang,; S. J. Pennycook,; A. T. S. Wee, et al. Point defects and localized excitons in 2D WSe2. ACS Nano 2019, 13, 6050-6059.
[146]
T. Kita,; O. Wada, Bound exciton states of isoelectronic centers in GaAs: N grown by an atomically controlled doping technique. Phys. Rev. B 2006, 74, 035213.
[147]
S. Gupta,; J. H. Yang,; B. I. Yakobson, Two-level quantum systems in two-dimensional materials for single photon emission. Nano Lett. 2018, 19, 408-414.
[148]
Q. Zhang,; Z. M. Ren,; N. Wu,; W. J. Wang,; Y. J. Gao,; Q. Q. Zhang,; J. Shi,; L. Zhuang,; X. N. Sun,; L. Fu, Nitrogen-doping induces tunable magnetism in ReS2. npj 2D Mater. Appl. 2018, 2, 22.
[149]
B. Li,; T. Xing,; M. Z. Zhong,; L. Huang,; N. Lei,; J. Zhang,; J. B. Li,; Z. M. Wei, A two-dimensional Fe-doped SnS2 magnetic semiconductor. Nat. Commun. 2017, 8, 1958.
[150]
N. Singh,; U. Schwingenschlögl, Extended moment formation in monolayer WS2 doped with 3d transition-metals. ACS Appl. Mater. Interfaces 2016, 8, 23886-23890.
[151]
A. Ramasubramaniam,; D. Naveh, Mn-doped monolayer MoS2: An atomically thin dilute magnetic semiconductor. Phys. Rev. B 2013, 87, 195201.
[152]
X. Zhao,; C. X. Xia,; X. Q. Dai,; T. X. Wang,; P. Chen,; L. Tian, Electronic and magnetic properties of X-doped (X = Ni, Pd, Pt) WS2 monolayer. J. Magn. Magn. Mater. 2016, 414, 45-48.
[153]
Y. Q. Gao,; N. Ganguli,; P. J. Kelly, Itinerant ferromagnetism in p-doped monolayers of MoS2. Phys. Rev. B 2019, 99, 220406.
[154]
Z. X. Wang,; X. X. Zhao,; Y. K. Yang,; L. Qiao,; L. Lv,; Z. Chen,; Z. F. Di,; W. Ren,; S. J. Pennycook,; J. D. Zhou, et al. Phase-controlled synthesis of monolayer W1-xRexS2 alloy with improved photoresponse performance. Small 2020, 16, 2000852.
[155]
S. K. Pandey,; H. Alsalman,; J. G. Azadani,; N. Izquierdo,; T. Low,; S. A. Campbell, Controlled p-type substitutional doping in large- area monolayer WSe2 crystals grown by chemical vapor deposition. Nanoscale 2018, 10, 21374-21385.
Publication history
Copyright
Acknowledgements

Publication history

Received: 02 June 2020
Revised: 19 July 2020
Accepted: 27 July 2020
Published: 20 August 2020
Issue date: June 2021

Copyright

© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature

Acknowledgements

The authors acknowledge support from the Ministry of Education (MOE), Singapore, under AcRF Tier 3 (MOE2018-T3-1-005) and the Singapore National Research Foundation for funding the research under medium-sized centre programme. M. B. acknowledges support from MOE’s AcRF Tier 1 (R-284-000- 179-133).

Return