Discover the SciOpen Platform and Achieve Your Research Goals with Ease.
Search articles, authors, keywords, DOl and etc.
The impact of alkali metal carboxylates on the synthesis of colloidal quantum dots (CQDs) was investigated. Through a ligand removal experiment, we demonstrated that due to its high hydrophilic nature, sodium oleate dispersed in n-octadecene (ODE) with the formation of micelles with the help of other polar molecules, which resulted in reduced concentration of oleic acid and cadmium oleate both in the solution and on the surface of CQDs. These effects allow for control the size of CdSe CQDs in a wide range when synthesizing them by solely changing the amount of sodium oleate, under either cation-rich or anion-rich conditions. Additionally, enhanced ligand dynamics promote morphology transformation and suppress size deviation caused by different morphologies' existence in CQDs synthesis. Alkali metal oleate not only stabilized anion-rich CdSe CQDs but also results in highly crystallized wurtzite structure of CdSe CQDs when synthesizing them with excess anions. Furthermore, under anion-rich synthetic condition, anisotropic growth can be realized, leading to nanorods and nanoplatelets based on the alkali metal ions used. Given their outstanding effects and widely applicable synthetic conditions, alkali metal carboxylates offer new possibilities for designing efficient methods for synthesizing CQDs.
Peng, X. G. An Essay on Synthetic Chemistry of Colloidal Nanocrystals. Nano. Res. 2009, 2, 425–447.
Steigerwald, M. L.; Brus, L. E. Semiconductor Crystallites: a Class of Large Molecules. Acc. Chem. Res. 1990, 23, 183–188.
Wang, Y. H.; Pu, C. D.; Lei, H. R.; Qin, H. Y.; Peng, X. G. CdSe@CdS Dot@Platelet Nanocrystals: Controlled Epitaxy, Monoexponential Decay of Two-Dimensional Exciton, and Nonblinking Photoluminescence of Single Nanocrystal. J. Am. Chem. Soc. 2019, 141, 17617–17628.
Ithurria, S.; Dubertret, B. Quasi 2D Colloidal CdSe Platelets with Thicknesses Controlled at the Atomic Level. J. Am. Chem. Soc. 2008, 130, 16504–16505.
Murray, C. B.; Norris, D. J.; Bawendi, M. G. Synthesis and Characterization of Nearly Monodisperse Cde (E = S, Se, Te) Semiconductor Nanocrystallites. J. Am. Chem. Soc. 1993, 115, 8706–8715.
Micic, O. I.; Curtis, C. J.; Jones, K. M.; Sprague, J. R.; Nozik, A. J. Synthesis and Characterization of Inp Quantum Dots. J. Phys. Chem. 1994, 98, 4966–4969.
Norris, D. J.; Yao, N.; Charnock, F. T.; Kennedy, T. A. High-quality manganese-doped ZnSe nanocrystals. Nano Lett. 2001, 1, 3–7.
Boles, M. A.; Ling, D. S.; Hyeon, T.; Talapin, D. V. The surface science of nanocrystals. Nat. Mater. 2016, 15, 141–153.
de Arquer, F. P. G.; Talapin, D. V.; Klimov, V. I.; Arakawa, Y.; Bayer, M.; Sargent, E. H. Semiconductor quantum dots: Technological progress and future challenges. Science 2021, 373, 640.
Pu, C. D.; Qin, H. Y.; Gao, Y.; Zhou, J. H.; Wang, P.; Peng, X. G. Synthetic control of exciton behavior in colloidal quantum dots. J. Am. Chem. Soc. 2017, 139, 3302–3311.
Ithurria, S.; Guyot-Sionnest, P.; Mahler, B.; Dubertret, B. Mn2+ as a radial pressure gauge in colloidal core/shell nanocrystals. Phys. Rev. Lett. 2007, 99, 265501.
Zherebetskyy, D.; Scheele, M.; Zhang, Y. J.; Bronstein, N.; Thompson, C.; Britt, D.; Salmeron, M.; Alivisatos, P.; Wang, L. W. Hydroxylation of the surface of PbS nanocrystals passivated with oleic acid. Science 2014, 344, 1380–1384.
Owen, J. The coordination chemistry of nanocrystal surfaces. Science 2015, 347, 615–616.
De Nolf, K.; Capek, R. K.; Abe, S.; Sluydts, M.; Jang, Y. J.; Martins, J. C.; Cottenier, S.; Lifshitz, E.; Hens, Z. Controlling the size of hot injection made nanocrystals by manipulating the diffusion coefficient of the solute. J. Am. Chem. Soc. 2015, 137, 2495–2505.
Qu, L. H.; Peng, Z. A.; Peng, X. G. Alternative routes toward high quality CdSe nanocrystals. Nano Lett. 2001, 1, 333–337.
Pradhan, N.; Reifsnyder, D.; Xie, R. G.; Aldana, J.; Peng, X. G. Surface ligand dynamics in growth of nanocrystals. J. Am. Chem. Soc. 2007, 129, 9500–9509.
Park, J.; Joo, J.; Kwon, S. G.; Jang, Y. J.; Hyeon, T. Synthesis of monodisperse spherical nanocrystals. Angew. Chem., Int. Ed. 2007, 46, 4630–4660.
Peng, X. G.; Manna, L.; Yang, W. D.; Wickham, J.; Scher, E.; Kadavanich, A.; Alivisatos, A. P. Shape control of CdSe nanocrystals. Nature 2000, 404, 59–61.
Milliron, D. J.; Hughes, S. M.; Cui, Y.; Manna, L.; Li, J. B.; Wang, L. W.; Alivisatos, A. P. Colloidal nanocrystal heterostructures with linear and branched topology. Nature 2004, 430, 190–195.
Lv, L. L.; Li, J. Z.; Wang, Y. H.; Shu, Y. F.; Peng, X. G. Monodisperse CdSe quantum dots encased in six (100) facets via ligand-controlled nucleation and growth. J. Am. Chem. Soc. 2020, 142, 19926–19935.
Zhou, X. L.; Pu, C. D. Proton shuttle-assisted surface reconstruction toward nonpolar facets-terminated zinc-blende CdSe/CdS core/shell quantum dots. J. Am. Chem. Soc. 2023, 145, 26287–26295.
Schliehe, C.; Juarez, B. H.; Pelletier, M.; Jander, S.; Greshnykh, D.; Nagel, M.; Meyer, A.; Foerster, S.; Kornowski, A.; Klinke, C. et al. Ultrathin PbS sheets by two-dimensional oriented attachment. Science 2010, 329, 550–553.
Liu, L. P.; Zhuang, Z. B.; Xie, T.; Wang, Y. G.; Li, J.; Peng, Q.; Li, Y. D. Shape control of CdSe nanocrystals with zinc blende structure. J. Am. Chem. Soc. 2009, 131, 16423–16429.
Yin, Y. D.; Alivisatos, A. P. Colloidal nanocrystal synthesis and the organic–inorganic interface. Nature 2005, 437, 664–670.
Jeong, S.; Achermann, M.; Nanda, J.; Ivanov, S.; Klimov, V. I.; Hollingsworth, J. A. Effect of the thiol-thiolate equilibrium on the photophysical properties of aqueous CdSe/ZnS nanocrystal quantum dots. J. Am. Chem. Soc. 2005, 127, 10126–10127.
Peng, Z. A.; Peng, X. G. Formation of high-quality CdTe, CdSe, and CdS nanocrystals using CdO as precursor. J. Am. Chem. Soc. 2001, 123, 183–184.
Pan, D. C.; An, L. J.; Sun, Z. M.; Hou, W.; Yang, Y.; Yang, Z. Z.; Lu, Y. F. Synthesis of Cu-In-S ternary nanocrystals with tunable structure and composition. J. Am. Chem. Soc. 2008, 130, 5620–5621.
Yang, H. C.; Li, R. F.; Zhang, Y. J.; Yu, M. X.; Wang, Z.; Liu, X.; You, W. W.; Tu, D. T.; Sun, Z. Q.; Zhang, R. et al. Colloidal alloyed quantum dots with enhanced photoluminescence quantum yield in the NIR-II window. J. Am. Chem. Soc. 2021, 143, 2601–2607.
Anderson, N. C.; Owen, J. S. Soluble, chloride-terminated CdSe nanocrystals: Ligand exchange monitored by 1H and 31P NMR spectroscopy. Chem. Mater. 2013, 25, 69–76.
Kirkwood, N.; Monchen, J. O. V.; Crisp, R. W.; Grimaldi, G.; Bergstein, H. A. C.; du Fossé, I.; van der Stam, W.; Infante, I.; Houtepen, A. J. Finding and fixing traps in II-VI and III-V colloidal quantum dots: The importance of Z-type ligand passivation. J. Am. Chem. Soc. 2018, 140, 15712–15723.
Zhang, J.; Zhang, H. B.; Cao, W. C.; Pang, Z. F.; Li, J. Z.; Shu, Y. F.; Zhu, C. Q.; Kong, X. Q.; Wang, L. J.; Peng, X. G. Identification of facet-dependent coordination structures of carboxylate ligands on CdSe nanocrystals. J. Am. Chem. Soc. 2019, 141, 15675–15683.
Fritzinger, B.; Capek, R. K.; Lambert, K.; Martins, J. C.; Hens, Z. Utilizing self-exchange to address the binding of carboxylic acid ligands to CdSe quantum dots. J. Am. Chem. Soc. 2010, 132, 10195–10201.
Anderson, N. C.; Hendricks, M. P.; Choi, J. J.; Owen, J. S. Ligand exchange and the stoichiometry of metal chalcogenide nanocrystals: Spectroscopic observation of facile metal-carboxylate displacement and binding. J. Am. Chem. Soc. 2013, 135, 18536–18548.
Pu, C. D.; Dai, X. L.; Shu, Y. F.; Zhu, M. Y.; Deng, Y. Z.; Jin, Y. Z.; Peng, X. G. Electrochemically-stable ligands bridge the photoluminescence-electroluminescence gap of quantum dots. Nat. Commun. 2020, 11, 937.
Singh, S.; Tomar, R.; ten Brinck, S.; De Roo, J.; Geiregat, P.; Martins, J. C.; Infante, I.; Hens, Z. Colloidal CdSe nanoplatelets, a model for surface chemistry/optoelectronic property relations in semiconductor nanocrystals. J. Am. Chem. Soc. 2018, 140, 13292–13300.
Cao, Y. C.; Wang, J. H. One-pot synthesis of high-quality zinc-blende CdS nanocrystals. J. Am. Chem. Soc. 2004, 126, 14336–14337.
Xie, R. G.; Battaglia, D.; Peng, X. G. Colloidal InP nanocrystals as efficient emitters covering blue to near-infrared. J. Am. Chem. Soc. 2007, 129, 15432–15433.
Pu, C. D.; Zhou, J. H.; Lai, R. C.; Niu, Y.; Nan, W. N.; Peng, X. G. Highly reactive, flexible yet green Se precursor for metal selenide nanocrystals: Se-octadecene suspension (Se-SUS). Nano. Res. 2013, 6, 652–670.
Zhou, X. L.; Li, J. Z.; Qian, X. D.; Zhu, J.; Kong, X. Q.; Peng, X. G. Selective formation of monodisperse right trigonal-bipyramidal and cube-shaped CdSe nanocrystals: Stacking faults and facet-ligand pairing. J. Am. Chem. Soc. 2023, 145, 23238–23248.
Nikiforidis, C. V.; Gilbert, E. P.; Scholten, E. Organogel formation via supramolecular assembly of oleic acid and sodium oleate. Rsc Adv 2015, 5, 47466–47475.
Cui, X. H.; Mao, S. Z.; Liu, M. L.; Yuan, H. Z.; Du, Y. R. Mechanism of surfactant micelle formation. Langmuir 2008, 24, 10771–10775.
Chen, O.; Yang, Y. A.; Wang, T.; Wu, H. M.; Niu, C. G.; Yang, J. H.; Cao, Y. C. Surface-functionalization-dependent optical properties of II-VI semiconductor nanocrystals. J. Am. Chem. Soc. 2011, 133, 17504–17512.
Talapin, D. V.; Rogach, A. L.; Haase, M.; Weller, H. Evolution of an ensemble of nanoparticles in a colloidal solution: Theoretical study. J. Phys. Chem. B 2001, 105, 12278–12285.
Rempel, J. Y.; Bawendi, M. G.; Jensen, K. F. Insights into the kinetics of semiconductor nanocrystal nucleation and growth. J. Am. Chem. Soc. 2009, 131, 4479–4489.
Kwon, S. G.; Hyeon, T. Formation mechanisms of uniform nanocrystals via hot-injection and heat-up methods. Small 2011, 7, 2685–2702.
Yu, W. W.; Peng, X. G. Formation of high-quality CdS and other II-VI semiconductor nanocrystals in noncoordinating solvents: Tunable reactivity of monomers. 3.0.CO;2-G">Angew. Chem., Int. Ed. 2002, 41, 2368–2371.
Liu, H. Y.; Liu, Z.; Pu, C. D. Size focusing of colloidal quantum dots under high monomer concentration. Nano. Res. 2022, 15, 7622–7630.
Zhang, J. K.; Li, C. Y.; Li, J. Z.; Peng, X. G. Synthesis of CdSe/ZnSe core/shell and CdSe/ZnSe/ZnS core/shell/shell nanocrystals: Surface-ligand strain and CdSe–ZnSe lattice strain. Chem. Mater. 2023, 35, 7049–7059.
Pu, C. D.; Peng, X. G. To battle surface traps on CdSe/CdS core/shell nanocrystals: Shell isolation versus surface treatment. J. Am. Chem. Soc. 2016, 138, 8134–8142.
Gao, Y.; Peng, X. G. Crystal structure control of CdSe nanocrystals in growth and nucleation: Dominating effects of surface versus interior structure. J. Am. Chem. Soc. 2014, 136, 6724–6732.
Washington, A. L.; Foley, M. E.; Cheong, S.; Quffa, L.; Breshike, C. J.; Watt, J.; Tilley, R. D.; Strouse, G. F. Ostwald’s rule of stages and its role in CdSe quantum dot crystallization. J. Am. Chem. Soc. 2012, 134, 17046–17052.
Cassette, E.; Mahler, B.; Guigner, J. M.; Patriarche, G.; Dubertret, B.; Pons, T. Colloidal CdSe/CdS dot-in-plate nanocrystals with 2D-polarized emission. ACS Nano 2012, 6, 6741–6750.