Discover the SciOpen Platform and Achieve Your Research Goals with Ease.
Search articles, authors, keywords, DOl and etc.
Zn is a frequently used and sometimes even an inevitably involved element (when zeolitic imidazolate framework-8 (ZIF-8) is adopted as the precursor) for preparing high-performance Fe-N-C oxygen reduction reaction (ORR) catalysts. However, how the Zn element affects the physicochemical architecture of the catalysts, how it enhances the catalytic activity and whether Zn atoms serve as the active centers remain unclear. Herein, we proposed a novel route that adopted pyrrole as the precursor and flexibly controlled the addition of exogenous Zn and Fe dopants before pyrrole polymerization. In this way, a series of nitrogen-carbon catalysts with or without Zn or Fe doping were synthesized. The detailed characterization revealed the role of Zn and Fe doping in the catalyst morphology, pore structure, active site configurations, ORR catalytic activity and fuel cell performance. Importantly, the findings revealed that Zn doping has little effect on the ORR mechanism and pathway. It enhances ORR activity primarily by increasing the number of active sites via introducing more micro- and meso-pores, rather than by creating new active sites. While Fe doping participated in forming both pores and active site centers. Moreover, the catalyst that co-doped with Zn and Fe atoms (Zn-FeNC), synthesized via this simple and template-free route we proposed, presented a unique hollow and hierarchical pore structure with highly boosted ORR activity. It exhibited a 40 mV higher E1/2 value than Pt/C in alkaline media, along with a rapid current response in air-cathode of the direct formate fuel cell. These results are valuable in guiding the synthesis of high-performance Fe-N-C catalysts.
Debe, M. K. Electrocatalyst approaches and challenges for automotive fuel cells. Nature 2012, 486, 43–51.
Katsounaros, I.; Cherevko, S.; Zeradjanin, A. R.; Mayrhofer, K. J. J. Oxygen electrochemistry as a cornerstone for sustainable energy conversion. Angew. Chem., Int. Ed. 2014, 53, 102–121.
Huang, X. Q.; Zhao, Z. P.; Cao, L.; Chen, Y.; Zhu, E. B.; Lin, Z. Y.; Li, M. F.; Yan, A. M.; Zettl, A.; Wang, Y. M. et al. High-performance transition metal-doped Pt3Ni octahedra for oxygen reduction reaction. Science 2015, 348, 1230–1234.
Chong, L. N.; Wen, J. G.; Kubal, J.; Sen, F. G.; Zou, J. X.; Greeley, J.; Chan, M.; Barkholtz, H.; Ding, W. J.; Liu, D. J. Ultralow-loading platinum-cobalt fuel cell catalysts derived from imidazolate frameworks. Science 2018, 362, 1276–1281.
Nørskov, J. K.; Rossmeisl, J.; Logadottir, A.; Lindqvist, L.; Kitchin, J. R.; Bligaard, T.; Jónsson, H. Origin of the overpotential for oxygen reduction at a fuel-cell cathode. J. Phys. Chem. B 2004, 108, 17886–17892.
Martinez, U.; Babu, S. K.; Holby, E. F.; Chung, H. T.; Yin, X.; Zelenay, P. Progress in the development of Fe-based PGM-free electrocatalysts for the oxygen reduction reaction. Adv. Mater. 2019, 31, 1806545.
Shen, H. J.; Thomas, T.; Rasaki, S. A.; Saad, A.; Hu, C.; Wang, J. C.; Yang, M. H. Oxygen reduction reactions of Fe-N-C catalysts: Current status and the way forward. Electrochem. Energy Rev. 2019, 2, 252–276.
Jaouen, F.; Proietti, E.; Lefèvre, M.; Chenitz, R.; Dodelet, J. P.; Wu, G.; Chung, H. T.; Johnston, C. M.; Zelenay, P. Recent advances in non-precious metal catalysis for oxygen-reduction reaction in polymer electrolyte fuel cells. Energy Environ. Sci. 2011, 4, 114–130.
Gong, K. P.; Du, F.; Xia, Z. H.; Durstock, M.; Dai, L. M. Nitrogen-doped carbon nanotube arrays with high electrocatalytic activity for oxygen reduction. Science 2009, 323, 760–764.
Tang, C.; Zhang, Q. Nanocarbon for oxygen reduction electrocatalysis: Dopants, edges, and defects. Adv. Mater. 2017, 29, 1604103.
Yang, L. J.; Shui, J. L.; Du, L.; Shao, Y. Y.; Liu, J.; Dai, L. M.; Hu, Z. Carbon-based metal-free ORR electrocatalysts for fuel cells: Past, present, and future. Adv. Mater. 2019, 31, 1804799.
Wang, L.; Ambrosi, A.; Pumera, M. “Metal-free” catalytic oxygen reduction reaction on heteroatom-doped graphene is caused by trace metal impurities. Angew. Chem., Int. Ed. 2013, 52, 13818–13821.
Masa, J.; Xia, W.; Muhler, M.; Schuhmann, W. On the role of metals in nitrogen-doped carbon electrocatalysts for oxygen reduction. Angew. Chem., Int. Ed. 2015, 54, 10102–10120.
Wang, Y.; Wang, L.; Fu, H. G. Research progress of Fe-N-C catalysts for the electrocatalytic oxygen reduction reaction. Sci. China Mater. 2022, 65, 1701–1722.
Zhang, X.; Truong-Phuoc, L.; Asset, T.; Pronkin, S.; Pham-Huu, C. Are Fe-N-C electrocatalysts an alternative to Pt-based electrocatalysts for the next generation of proton exchange membrane fuel cells. ACS Catal. 2022, 12, 13853–13875.
Zou, Y. N.; Li, J.; Peng, Q.; Liu, Z. F.; Fu, Q.; Zhang, L.; Liao, Q.; Zhu, X. Tuning the wettability of advanced mesoporous Fe-N-C catalysts for optimizing the construction of the gas/liquid/solid three-phase interface in air-cathodes. Chem. Eng. J. 2022, 450, 138342.
Chen, Y. F.; Li, Z. J.; Zhu, Y. B.; Sun, D. M.; Liu, X. E.; Xu, L.; Tang, Y. W. Atomic Fe dispersed on N-doped carbon hollow nanospheres for high-efficiency electrocatalytic oxygen reduction. Adv. Mater. 2019, 31, 1806312.
Zhang, H. G.; Hwang, S.; Wang, M. Y.; Feng, Z. X.; Karakalos, S.; Luo, L. L.; Qiao, Z.; Xie, X. H.; Wang, C. M.; Su, D. et al. Single atomic iron catalysts for oxygen reduction in acidic media: Particle size control and thermal activation. J. Am. Chem. Soc. 2017, 139, 14143–14149.
Zou, Y. N.; Li, J.; Fu, Q.; Zhang, L.; Liao, Q.; Zhu, X. Macroporous hollow nanocarbon shell-supported Fe-N catalysts for oxygen reduction reaction in microbial fuel cellss. Electrochim. Acta 2019, 320, 134590.
Lee, S. H.; Kim, J.; Chung, D. Y.; Yoo, J. M.; Lee, H. S.; Kim, M. J.; Mun, B. S.; Kwon, S. G.; Sung, Y. E.; Hyeon, T. Design principle of Fe-N-C electrocatalysts: How to optimize multimodal porous structures. J. Am. Chem. Soc. 2019, 141, 2035–2045.
Wang, P. W.; Hayashi, T.; Meng, Q. A.; Wang, Q. B.; Liu, H.; Hashimoto, K.; Jiang, L. Highly boosted oxygen reduction reaction activity by tuning the underwater wetting state of the superhydrophobic electrode. Small 2017, 13, 1601250.
Zhou, Y.; Yu, Y. N.; Ma, D. S.; Foucher, A. C.; Xiong, L.; Zhang, J. H.; Stach, E. A.; Yue, Q.; Kang, Y. J. Atomic Fe dispersed hierarchical mesoporous Fe-N-C nanostructures for an efficient oxygen reduction reaction. ACS Catal. 2021, 11, 74–81.
Wang, Y.; Tang, Y. J.; Zhou, K. Self-adjusting activity induced by intrinsic reaction intermediate in Fe-N-C single-atom catalysts. J. Am. Chem. Soc. 2019, 141, 14115–14119.
Ao, X.; Zhang, W.; Li, Z. S.; Li, J. G.; Soule, L.; Huang, X.; Chiang, W. H.; Chen, H. M.; Wang, C. D.; Liu, M. L. et al. Markedly enhanced oxygen reduction activity of single-atom Fe catalysts via integration with Fe nanoclusters. ACS Nano 2019, 13, 11853–11862.
Chen, K. J.; Liu, K.; An, P. D.; Li, H. H. J. W.; Lin, Y. Y.; Hu, J. H.; Jia, C. K.; Fu, J. W.; Li, H. M.; Liu, H. et al. Iron phthalocyanine with coordination induced electronic localization to boost oxygen reduction reaction. Nat. Commun. 2020, 11, 4173.
Wang, D.; Xu, H.; Yang, P. X.; Xiao, L. H.; Du, L.; Lu, X. Y.; Li, R. P.; Zhang, J. Q.; An, M. Z. A dual-template strategy to engineer hierarchically porous Fe-N-C electrocatalysts for the high-performance cathodes of Zn-air batteries. J. Mater. Chem. A 2021, 9, 9761–9770.
Guo, J. N.; Li, B. J.; Zhang, Q. Y.; Liu, Q. T.; Wang, Z. L.; Zhao, Y. F.; Shui, J. L.; Xiang, Z. H. Highly accessible atomically dispersed Fe-N x sites electrocatalyst for proton-exchange membrane fuel cell. Adv. Sci. 2021, 8, 2002249.
Wan, X.; Liu, X. F.; Li, Y. C.; Yu, R. H.; Zheng, L. R.; Yan, W. S.; Wang, H.; Xu, M.; Shui, J. L. Fe-N-C electrocatalyst with dense active sites and efficient mass transport for high-performance proton exchange membrane fuel cells. Nat. Catal. 2019, 2, 259–268.
Jiao, L.; Li, J. K.; Richard, L. L.; Sun, Q.; Stracensky, T.; Liu, E. S.; Sougrati, M. T.; Zhao, Z. P.; Yang, F.; Zhong, S. C. et al. Chemical vapour deposition of Fe-N-C oxygen reduction catalysts with full utilization of dense Fe-N4 sites. Nat. Mater. 2021, 20, 1385–1391.
Xia, D. S.; Tang, X.; Dai, S.; Ge, R. L.; Rykov, A.; Wang, J. H.; Huang, T. H.; Wang, K. W.; Wei, Y. P.; Zhang, K. et al. Ultrastable Fe-N-C fuel cell electrocatalysts by eliminating non-coordinating nitrogen and regulating coordination structures at high temperatures. Adv. Mater. 2023, 35, 2204474.
Yu, L.; Wu, H. B.; Lou, X. W. D. Self-templated formation of hollow structures for electrochemical energy applications. Acc. Chem. Res. 2017, 50, 293–301.
Kumar, K.; Dubau, L.; Jaouen, F.; Maillard, F. Review on the degradation mechanisms of metal-N-C catalysts for the oxygen reduction reaction in acid electrolyte: Current understanding and mitigation approaches. Chem. Rev. 2023, 123, 9265–9326.
Thommes, M.; Kaneko, K.; Neimark, A. V.; Olivier, J. P.; Rodriguez-Reinoso, F.; Rouquerol, J.; Sing, K. S. W. Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC technical report). Pure Appl. Chem. 2015, 87, 1051–1069.
Zou, Y. N.; Li, J.; Yu, Y. C.; Zhang, J.; Fu, Q.; Zhang, L.; Liao, Q.; Zhu, X. Maximizing Fe-N exposure by tuning surface composition via twice acid treatment based on an ultrathin hollow nanocarbon structure for highly efficient oxygen reduction reaction. Chem. Eng. J. 2022, 432, 134362.
Lu, Z. Y.; Chen, G. X.; Siahrostami, S.; Chen, Z. H.; Liu, K.; Xie, J.; Liao, L.; Wu, T.; Lin, D. C.; Liu, Y. Y. et al. High-efficiency oxygen reduction to hydrogen peroxide catalysed by oxidized carbon materials. Nat. Catal. 2018, 1, 156–162.
Xia, D. S.; Yu, C. C.; Zhao, Y. H.; Wei, Y. P.; Wu, H. Y.; Kang, Y. Q.; Li, J.; Gan, L.; Kang, F. Y. Degradation and regeneration of Fe-N x active sites for the oxygen reduction reaction: The role of surface oxidation, Fe demetallation and local carbon microporosity. Chem. Sci. 2021, 12, 11576–11584.
Malko, D.; Kucernak, A.; Lopes, T. In situ electrochemical quantification of active sites in Fe-N/C non-precious metal catalysts. Nat. Commun. 2016, 7, 13285.
Zhou, W.; Xie, L.; Gao, J. H.; Nazari, R.; Zhao, H. Q.; Meng, X. X.; Sun, F.; Zhao, G. B.; Ma, J. Selective H2O2 electrosynthesis by O-doped and transition-metal-O-doped carbon cathodes via O2 electroreduction: A critical review. Chem. Eng. J. 2021, 410, 128368.