Discover the SciOpen Platform and Achieve Your Research Goals with Ease.
Search articles, authors, keywords, DOl and etc.
The bimetallic nickel-cobalt phosphide (NiCoP) has been confirmed as an efficient electrocatalyst in water splitting. But little attention is paid to the selectivity and affinity of metal sites on hydrogen evolution reaction (HER) and oxygen evolution reaction (OER). Herein, we report a trace-Zn-doping (2.18 wt.%) NiCoP (Zn-NiCoP) whereby the nanoparticles self-aggregated to form elongated nanoneedles. We discover that both Co and Ni sites can be replaced by Zn. The Co substitution improves HER, while the Ni substitution dramatically reduces the energy barrier of the rate-determining step (*O → *OOH). The negative shift of d-band centers after Zn doping ameliorates the intermediate desorption. Therefore, Zn-NiCoP demonstrates superior electrocatalytic activity with overpotentials of 48 and 240 mV for HER and OER at 10 and 50 mA·cm−2, respectively. The cell voltage with Zn-NiCoP as both anode and cathode in water splitting was as low as 1.35 V at 10 mA·cm−2.
Fan, J. L.; Fu, C. Y.; Liang, R. K.; Lv, H. Y.; Fang, C. S.; Guo, Y. H.; Hao, W. J. Mild construction of “midas touch” metal-organic framework-based catalytic electrodes for highly efficient overall seawater splitting. Small 2022, 18, 2203588.
Lu, B. W.; Dun, R. M.; Wang, W.; Huang, J.; Wu, J. X.; Hua, Z. L.; Shi, J. L. Electroless plating synthesis of bifunctional crystalline/amorphous Pd-NiFeB heterostructure catalysts for boosted electrocatalytic water splitting. Appl. Catal. B: Environ. 2024, 342, 123343.
Shindell, D.; Smith, C. J. Climate and air-quality benefits of a realistic phase-out of fossil fuels. Nature 2019, 573, 408–411.
Jeong, J. W.; Baek, S.; Kim, Y.; Woo, S.; Lim, Y.; Lee, K. Investigation of CO2 and PN emission characteristics according to the propane content for a LPG engine. Fuel 2024, 357, 129877.
Nguyen, T. H.; Tran, P. K. L.; Dinh, V. A.; Tran, D. T.; Kim, N. H.; Lee, J. H. Metal single-site molecular complex-MXene heteroelectrocatalysts interspersed graphene nanonetwork for efficient dual-task of water splitting and metal-air batteries. Adv. Funct. Mater. 2023, 33, 2210101.
Yu, J.; He, Q. J.; Yang, G. M.; Zhou, W.; Shao, Z. P.; Ni, M. Recent advances and prospective in ruthenium-based materials for electrochemical water splitting. ACS Catal. 2019, 9, 9973–10011.
Nguyen, T. B.; Sherpa, K.; Chen, C. W.; Chen, L.; Dong, C. D. Breakthroughs and prospects in ruthenium-based electrocatalyst for hydrogen evolution reaction. J. Alloy. Compd. 2023, 968, 172020.
Ekspong, J.; Larsen, C.; Stenberg, J.; Kwong, W. L.; Wang, J.; Zhang, J. B.; Johansson, E. M. J.; Messinger, J.; Edman, L.; Wågberg, T. Solar-driven water splitting at 13.8% solar-to-hydrogen efficiency by an earth-abundant electrolyzer. ACS Sustain. Chem. Eng. 2021, 9, 14070–14078.
Anantharaj, S.; Ede, S. R.; Karthick, K.; Sam Sankar, S.; Sangeetha, K.; Karthik, P. E.; Kundu, S. Precision and correctness in the evaluation of electrocatalytic water splitting: Revisiting activity parameters with a critical assessment. Energy Environ. Sci. 2018, 11, 744–771.
Solanki, R.; Patra, I.; Ahmad, N.; Bharath Kumar, N.; Parra, R. M. R.; Zaidi, M.; Yasin, G.; Anil Kumar, T. C.; Hussein, A. H.; Sivaraman, R. et al. Investigation of recent progress in metal-based materials as catalysts toward electrochemical water splitting. J. Environ. Chem. Eng. 2022, 10, 108207.
Chen, X.; Lin, S. Y.; Zhang, H. Screening of single-atom catalysts sandwiched by boron nitride sheet and graphene for oxygen reduction and oxygen evolution. Renew. Energy 2022, 189, 502–509.
Lin, X. L.; Liu, J. L.; Wu, L. J.; Chen, L. H.; Qi, Y.; Qiu, Z. J.; Sun, S. R.; Dong, H. F.; Qiu, X. Q.; Qin, Y. L. In situ coupling of lignin-derived carbon-encapsulated CoFe–Co x N heterojunction for oxygen evolution reaction. AIChE J. 2022, 68, e17785.
Paygozar, S.; Aghdam, A. S. R.; Hassanizadeh, E.; Andaveh, R.; Darband, G. B. Recent progress in non-noble metal-based electrocatalysts for urea-assisted electrochemical hydrogen production. Int. J. Hydrogen Energy 2023, 48, 7219–7259.
Yang, J. Y.; Chai, C. L.; Jiang, C.; Liu, L.; Xi, J. Y. MoS2-CoS2 heteronanosheet arrays coated on porous carbon microtube textile for overall water splitting. J. Power Sources 2021, 514, 230580.
Su, J. Z.; Zhou, J. L.; Wang, L.; Liu, C.; Chen, Y. B. Synthesis and application of transition metal phosphides as electrocatalyst for water splitting. Sci. Bull. 2017, 62, 633–644.
Zang, Y.; Lu, D. Q.; Wang, K.; Li, B.; Peng, P.; Lan, Y. Q.; Zang, S. Q. A pyrolysis-free Ni/Fe bimetallic electrocatalyst for overall water splitting. Nat. Commun. 2023, 14, 1792.
Yang, Q.; Li, G. W.; Manna, K.; Fan, F. R.; Felser, C.; Sun, Y. Topological engineering of Pt-group-metal-based chiral crystals toward high-efficiency hydrogen evolution catalysts. Adv. Mater. 2020, 32, 1908518.
Chen, D. L.; Liu, J. L.; Qiu, X. Q.; Liu, B. W.; Wang, X. F.; Qiu, Z. J.; Lin, X. L.; Qin, Y. L. Lignin-assisted alloying engineering of CoNiRu trimetallic nano-catalyst for effective overall water splitting. AIChE J. 2024, 70, e18323.
Li, Y. Q.; Yin, Z. H.; Cui, M.; Liu, X.; Xiong, J. B.; Chen, S. R.; Ma, T. L. Interface engineering of transitional metal sulfide-MoS2 heterostructure composites as effective electrocatalysts for water-splitting. J. Mater. Chem. A 2021, 9, 2070–2092.
Guo, Y. N.; Park, T.; Yi, J. W.; Henzie, J.; Kim, J.; Wang, Z. L.; Jiang, B.; Bando, Y.; Sugahara, Y.; Tang, J. et al. Nanoarchitectonics for transition-metal-sulfide-based electrocatalysts for water splitting. Adv. Mater. 2019, 31, 1807134.
Zhou, S. B.; Chen, X. M.; Li, T. T.; Wei, Y.; Sun, R.; Han, S.; Jiang, J. B. Heterogeneous interface engineering of cationic vacancy defects layered double hydroxides and molybdenum-nickel-based selenium compounds to facilitate overall water splitting. Fuel 2024, 357, 129732.
Sarkar, S.; Roy, S.; Zhao, Y. F.; Zhang, J. J. Recent advances in semimetallic pnictogen (As, Sb, Bi) based anodes for sodium-ion batteries: Structural design, charge storage mechanisms, key challenges and perspectives. Nano Res. 2021, 14, 3690–3723.
Ashraf, M.; Ullah, N.; Raziq, F.; Khan, I.; Alhooshani, K. R.; Ganiyu, S. A.; Tahir, M. N. Carbon nitride (C3N3) decorated with non-noble metal Ni2P Co-catalyst based nanocomposites for photocatalytic water splitting. Electrochim. Acta 2023, 470, 143296.
Ma, B.; Yang, Z. C.; Chen, Y. T.; Yuan, Z. H. Nickel cobalt phosphide with three-dimensional nanostructure as a highly efficient electrocatalyst for hydrogen evolution reaction in both acidic and alkaline electrolytes. Nano Res. 2019, 12, 375–380.
Liu, Y. Q.; Zhang, Z. H.; Zhang, L.; Xia, Y. G.;Wang, H. Q.; Liu, H.; Ge, S. G.; Yu, J. H. Manipulating the d-band centers of transition metal phosphides through dual metal doping towards robust overall water splitting. J. Mater. Chem. A 2022, 10, 22125–22134.
Xu, T. Y.; Jiao, D. X.; Zhang, L.; Zhang, H. Y.; Zheng, L. R.; Singh, D. J.; Zhao, J. X.; Zheng, W. T.; Cui, X. Q. Br-induced P-poor defective nickel phosphide for highly efficient overall water splitting. Appl. Catal. B: Environ. 2022, 316, 121686.
Saruyama, M.; Kim, S.; Nishino, T.; Sakamoto, M.; Haruta, M.; Kurata, H.; Akiyama, S.; Yamada, T.; Domen, K.; Teranishi, T. Phase-segregated NiP x @FeP y O z core@shell nanoparticles: Ready-to-use nanocatalysts for electro-and photo-catalytic water oxidation through in situ activation by structural transformation and spontaneous ligand removal. Chem. Sci. 2018, 9, 4830–4836.
Zhang, H.; Chen, A. R.; Bi, Z. H.; Wang, X. Z.; Liu, X. J.; Kong, Q. Q.; Zhang, W.; Mai, L.; Hu, G. Z. MOF-on-MOF-derived ultrafine Fe2P-Co2P heterostructures for high-efficiency and durable anion exchange membrane water electrolyzers. ACS Nano 2023, 17, 24070–24079.
Anjum, M. A. R.; Lee, J. S. Sulfur and nitrogen dual-doped molybdenum phosphide nanocrystallites as an active and stable hydrogen evolution reaction electrocatalyst in acidic and alkaline media. ACS Catal. 2017, 7, 3030–3038.
Huang, C. Y.; Xia, Z. H.; Wang, J.; Zhang, J.; Zhao, C. F.; Zou, X. L.; Mu, S. C.; Zhang, J. J.; Lu, X. G.; Fan, H. J. et al. Highly efficient and stable electrocatalyst for hydrogen evolution by molybdenum doped Ni-Co phosphide nanoneedles at high current density. Nano Res. 2024, 17, 1066–1074.
Qin, M. L.; Chen, L. L.; Zhang, H. M.; Humayun, M.; Fu, Y. J.; Xu, X. F.; Xue, X. Y.; Wang, C. D. Achieving highly efficient pH-universal hydrogen evolution by Mott–Schottky heterojunction of Co2P/Co4N. Chem. Eng. J. 2023, 454, 140230.
Wang, Y.; Kong, B.; Zhao, D. Y.; Wang, H. T.; Selomulya, C. Strategies for developing transition metal phosphides as heterogeneous electrocatalysts for water splitting. Nano Today 2017, 15, 26–55.
Peng, L. S.; Shah, S. S. A.; Wei, Z. D. Recent developments in metal phosphide and sulfide electrocatalysts for oxygen evolution reaction. Chin. J. Catal. 2018, 39, 1575–1593.
Wang, X. Y.; Le, J. B.; Fei, Y.; Gao, R. Q.; Jing, M. X.; Yuan, W. Y.; Li, C. M. Self-assembled ultrasmall mixed Co-W phosphide nanoparticles on pristine graphene with remarkable synergistic effects as highly efficient electrocatalysts for hydrogen evolution. J. Mater. Chem. A 2022, 10, 7694–7704.
Wang, Y. L.; Du, Y. M.; Fu, Z. Q.; Ren, J. H.; Fu, Y. L.; Wang, L. Construction of Ru/FeCoP heterointerface to drive dual active site mechanism for efficient overall water splitting. J. Mater. Chem. A 2022, 10, 16071–16079.
Li, N.; Han, J. R.; Yao, K. L.; Han, M.; Wang, Z. M.; Liu, Y. C.; Liu, L. H.; Liang, H. Y. Synergistic phosphorized NiFeCo and MXene interaction inspired the formation of high-valence metal sites for efficient oxygen evolution. J. Mater. Sci. Technol. 2022, 106, 90–97.
Zhang, H.; Bi, Z. H.; Sun, P. L.; Chen, A. R.; Wågberg, T.; Hu, X.; Liu, X. J.; Jiang, L. M.; Hu, G. Z. Dense crystalline/amorphous phosphides/oxides interfacial sites for enhanced industrial-level large current density seawater oxidation. ACS Nano 2023, 17, 16008–16019.
Ma, G. Y.; Ye, J. T.; Qin, M. Y.; Sun, T. Y.; Tan, W. X.; Fan, Z. H.; Huang, L. F.; Xin, X. Mn-doped NiCoP nanopin arrays as high-performance bifunctional electrocatalysts for sustainable hydrogen production via overall water splitting. Nano Energy 2023, 115, 108679.
Li, Y. J.; Zhang, H. C.; Jiang, M.; Kuang, Y.; Sun, X. M.; Duan, X. Ternary NiCoP nanosheet arrays: An excellent bifunctional catalyst for alkaline overall water splitting. Nano Res. 2016, 9, 2251–2259.
Zhao, D. Y.; Xu, S. L.; Kong, T.; Li, Z. L.; Zhang, M.; Miao, Y. D.; Feng, Z. P.; Qi, J. Q.; Wei, F. X.; Meng, Q. K. et al. Regulating the tip effect on urchin-like N-NiCoP/NF as high-performance electrocatalyst for hydrogen evolution reaction. J. Alloys Compd. 2023, 968, 172200.
Zhao, S. T.; Wang, Q. G.; Dong, S. B.; Chen, J.; Wang, S. M. Phosphated NiCo2O4 nanoneedle arrays on flexible carbon filaments for effective oxygen evolution reaction in alkaline aqueous conditions: Cooperation of small-sized effect and heteroatomic doping activation. Chem. Eng. J. 2020, 401, 126156.
Wang, C. D.; Jiang, J.; Ding, T.; Chen, G. H.; Xu, W. J.; Yang, Q. Monodisperse ternary NiCoP nanostructures as a bifunctional electrocatalyst for both hydrogen and oxygen evolution reactions with excellent performance. Adv. Mater. Interfaces 2016, 3, 1500454.
Yang, Y.; Zeng, D. H.; Shao, S.; Hao, S. J.; Zhu, G. L.; Liu, B. J. Construction of core–shell mesoporous carbon nanofiber@nickel cobaltite nanostructures as highly efficient catalysts towards 4-nitrophenol reduction. J.Colloid Interfaces Sci. 2019, 538, 377–386.
Ma, D.; Li, R. H.; Zheng, Z. L.; Jia, Z. J.; Meng, K.; Wang, Y.; Zhu, G. M.; Zhang, H.; Qi, T. NiCoP/CoP nanoparticles supported on Ti4O7 as the electrocatalyst possessing an excellent catalytic performance toward the hydrogen evolution reaction. ACS Sustain. Chem. Eng. 2018, 6, 14275–14282.
Shen, J. W.; Wang, Q. G.; Zhang, K.; Wang, S. M.; Li, L.; Dong, S. B.; Zhao, S. T.; Chen, J.; Sun, R. S.; Wang, Y. et al. Flexible carbon cloth based solid-state supercapacitor from hierarchical holothurian-morphological NiCo2O4@NiMoO4/PANI. Electrochim. Acta 2019, 320, 134578.
Wang, X. Y.; Tuo, Y.; Zhou, Y.; Wang, D.; Wang, S. T.; Zhang, J. Ta-doping triggered electronic structural engineering and strain effect in NiFe LDH for enhanced water oxidation. Chem. Eng. J. 2021, 403, 126297.
Pan, Y.; Liu, Y. R.; Zhao, J. C.; Yang, K.; Liang, J. L.; Liu, D. D.; Hu, W. H.; Liu, D. P.; Liu, Y. Q.; Liu, C. G. Monodispersed nickel phosphide nanocrystals with different phases: Synthesis, characterization and electrocatalytic properties for hydrogen evolution. J. Mater. Chem. A 2015, 3, 1656–1665.
Du, C.; Yang, L.; Yang, F. L.; Cheng, G. Z.; Luo, W. Nest-like NiCoP for highly efficient overall water splitting. ACS Catal. 2017, 7, 4131–4137.
Hu, E. L.; Feng, Y. F.; Nai, J. W.; Zhao, D.; Hu, Y.; Lou, X. W. Construction of hierarchical Ni-Co-P hollow nanobricks with oriented nanosheets for efficient overall water splitting. Energy Environ. Sci. 2018, 11, 872–880.
Dong, T.; Zhang, X.; Wang, P.; Chen, H. S.; Yang, P. Hierarchical nickel-cobalt phosphide hollow spheres embedded in P-doped reduced graphene oxide towards superior electrochemistry activity. Carbon 2019, 149, 222–233.
Yu, J.; Li, Q. Q.; Li, Y.; Xu, C. Y.; Zhen, L.; Dravid, V. P.; Wu, J. S. Ternary metal phosphide with triple-layered structure as a low-cost and efficient electrocatalyst for bifunctional water splitting. Adv. Funct. Mater. 2016, 26, 7644–7651.
Yang, F. L.; Chen, Y. T.; Cheng, G. Z.; Chen, S. L.; Luo, W. Ultrathin nitrogen-doped carbon coated with CoP for efficient hydrogen evolution. ACS Catal. 2017, 7, 3824–3831.
Zhang, B.; Yang, F.; Liu, X. D.; Wu, N.; Che, S.; Li, Y. F. Phosphorus doped nickel-molybdenum aerogel for efficient overall water splitting. Appl. Catal. B: Environ. 2021, 298, 120494.
Huang, H. W.; Yu, C.; Yang, J.; Zhao, C. T.; Han, X. T.; Liu, Z. B.; Qiu, J. S. Strongly coupled architectures of cobalt phosphide nanoparticles assembled on graphene as bifunctional electrocatalysts for water splitting. ChemElectroChem 2016, 3, 719–725.
Surendran, S.; Shanmugapriya, S.; Sivanantham, A.; Shanmugam, S.; Selvan, R. K. Electrospun carbon nanofibers encapsulated with NiCoP: A multifunctional electrode for supercapattery and oxygen reduction, oxygen evolution, and hydrogen evolution reactions. Adv. Energy Mater. 2018, 8, 1800555.
Liu, H. X.; Peng, X. Y.; Liu, X. J.; Qi, G. C.; Luo, J. Porous Mn-doped FeP/Co3(PO4)2 nanosheets as efficient electrocatalysts for overall water splitting in a wide pH range. ChemSusChem 2019, 12, 1334–1341.
Liu, H. X.; Liu, X. J.; Mao, Z. Y.; Zhao, Z.; Peng, X. Y.; Luo, J.; Sun, X. M. Plasma-activated Co3(PO4)2 nanosheet arrays with Co3+-rich surfaces for overall water splitting. J. Power Sources 2018, 400, 190–197.
Liu, X. P.; Deng, S. F.; Liu, P. F.; Liang, J. N.; Gong, M. X.; Lai, C. L.; Lu, Y.; Zhao, T. H.; Wang, D. L. Facile self-template fabrication of hierarchical nickel-cobalt phosphide hollow nanoflowers with enhanced hydrogen generation performance. Sci. Bull. 2019, 64, 1675–1684.
Menezes, P. W.; Indra, A.; Bergmann, A.; Chernev, P.; Walter, C.; Dau, H.; Strasser, P.; Driess, M. Uncovering the prominent role of metal ions in octahedral versus tetrahedral sites of cobalt-zinc oxide catalysts for efficient oxidation of water. J. Mater. Chem. A 2016, 4, 10014–10022.
Liu, C. L.; Zhang, G.; Yu, L.; Qu, J. H.; Liu, H. J. Oxygen doping to optimize atomic hydrogen binding energy on NiCoP for highly efficient hydrogen evolution. Small 2018, 14, 1800421.
Cui, Z.; Ge, Y. C.; Chu, H.; Baines, R.; Dong, P.; Tang, J. H.; Yang, Y.; Ajayan, P. M.; Ye, M. X.; Shen, J. F. Controlled synthesis of Mo-doped Ni3S2 nano-rods: An efficient and stable electro-catalyst for water splitting. J. Mater. Chem. A 2017, 5, 1595–1602.
Jin, H. Y.; Wang, J.; Su, D. F.; Wei, Z. Z.; Pang, Z. F.; Wang, Y. In situ cobalt-cobalt oxide/N-doped carbon hybrids as superior bifunctional electrocatalysts for hydrogen and oxygen evolution. J. Am. Chem. Soc, 2015, 137, 2688–2694.
Chen, D.; Bai, H. W.; Zhu, J. W.; Wu, C.; Zhao, H. Y.; Wu, D. L.; Jiao, J. X.; Ji, P. X.; Mu, S. C. Multiscale hierarchical structured nicop enabling ampere-level water splitting for multi-scenarios green energy-to-hydrogen systems. Adv. Energy Mater. 2023, 13, 2300499.