AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Synthesis of palladium-rare earth alloy as a high-performance bifunctional catalyst for direct ethanol fuel cells

Qingqing Li1Chang Sun1Xiaolei Sun1Zijun Yin2Yaping Du1( )Jin-Cheng Liu1( )Feng Luo1( )
Tianjin Key Laboratory of Rare Earth Materials and Applications, School of Materials Science and Engineering, Center for Rare Earth and Inorganic Functional Materials, Nankai University, Tianjin 300350, China
The Experimental High School Attached to Beijing Normal University, Beijing 100032, China
Show Author Information

Graphical Abstract

A series of palladium-rare earth alloys with bifunctional electrocatalytic activity for oxygen reduction reaction and ethanol oxidation reaction were designed, prepared and applied in direct ethanol fuel cells ( “AEM” is anion-exchange membrane).

Abstract

Direct ethanol fuel cells (DEFCs) have drawn attention for their simplicity, rapid start-up, high power density and environmental friendliness. Despite these advantages, the widespread application of DEFCs faces challenges, primarily due to the inadequate performance of anode and cathode catalysts. Pd-based materials have shown exceptional catalytic activity for both the ethanol oxidation reaction (EOR) and the oxygen reduction reaction (ORR). Alloying noble metals with rare earth elements has emerged as an effective strategy to further enhance the catalytic activity by modulating the electronic structure. In this study, we synthesized a series of palladium-rare earth (Pd3RE) alloys supported on carbon to serve as bifunctional catalysts that efficiently promote both ORR and EOR. Compared to Pd/C, the Pd3Tb/C catalyst exhibits 3.1-fold and 1.8-fold enhancement in activity for ORR and EOR, respectively. The charge transfer in the Pd3Tb/C results in an electron-rich Pd component, thereby weakening the binding energy with oxygen species and facilitating the two reactions.

Electronic Supplementary Material

Download File(s)
6933_ESM.pdf (1.9 MB)

References

[1]

Abdelkareem, M. A.; Elsaid, K.; Wilberforce, T.; Kamil, M.; Sayed, E. T.; Olabi, A. Environmental aspects of fuel cells: A review. Sci. Total Environ. 2021, 752, 141803.

[2]

Xiao, F.; Wang, Y. C.; Wu, Z. P.; Chen, G. Y.; Yang, F.; Zhu, S. Q.; Siddharth, K.; Kong, Z. J.; Lu, A. L.; Li, J. C. et al. Recent advances in electrocatalysts for proton exchange membrane fuel cells and alkaline membrane fuel cells. Adv. Mater. 2021, 33, 2006292.

[3]

Li, L. B.; Tang, X. N.; Wu, B.; Huang, B. Y.; Yuan, K.; Chen, Y. W. Advanced architectures of air electrodes in zinc-air batteries and hydrogen fuel cells. Adv. Mater. 2024, 36, 2308326.

[4]

Berretti, E.; Osmieri, L.; Baglio, V.; Miller, H. A.; Filippi, J.; Vizza, F.; Santamaria, M.; Specchia, S.; Santoro, C.; Lavacchi, A. Direct alcohol fuel cells: A comparative review of acidic and alkaline systems. Electrochem. Energy Rev. 2023, 6, 30.

[5]

Nguyen, A. Q. K.; Pham, H. Q.; Huynh, S. T. M.; Huynh, T. T. Milestones of electrocatalyst development for direct alcohol fuel cells. Adv. Sustain. Syst. 2023, 7, 2300205.

[6]

Fu, X. Y.; Wan, C. Z.; Huang, Y.; Duan, X. F. Noble metal based electrocatalysts for alcohol oxidation reactions in alkaline media. Adv. Funct. Mater. 2022, 32, 2106401.

[7]

Fu, H. C.; Chen, Z. X.; Chen, X. H.; Jing, F.; Yu, H.; Chen, D.; Yu, B. B.; Hu, Y. H.; Jin, Y. X. Modification strategies for development of 2D material-based electrocatalysts for alcohol oxidation reaction. Adv. Sci. 2023, 3, 2306132.

[8]

Liang, C. J.; Zhao, R. Y.; Chen, T.; Luo, Y.; Hu, J. Q.; Qi, P.; Ding, W. P. Recent approaches for cleaving the C–C bond during ethanol electro-oxidation reaction. Adv. Sci. 2024, 11, 2308958.

[9]

Guo, J. C.; Wang, R.; Yu, J.; Zhang, Z. L.; Fu, X. C. Modulation of two-dimensional Pt-based intermetallic nanoplates for fuel cells. Mater. Express 2023, 13, 1813–1827.

[10]

Ipadeola, A. K.; Eid, K.; Lebechi, A. K.; Abdullah, A. M.; Ozoemena, K. I. Porous multi-metallic Pt-based nanostructures as efficient electrocatalysts for ethanol oxidation: A mini-review. Electrochem. Commun. 2022, 140, 107330.

[11]

Guo, J. C.; Jiao, S. L.; Ya, X. Y.; Zheng, H. L.; Wang, R.; Yu, J.; Wang, H. Y.; Zhang, Z. L.; Liu, W.; He, C. X. et al. Ultrathin Pd-based perforated nanosheets for fuel cells electrocatalysis. ChemElectroChem 2022, 9, e202200729.

[12]

Song, W. W.; Xu, Y. Q.; Xie, X. L.; Li, C. J.; Zhu, W. F.; Xiang, Q. K.; Chen, W.; Tang, N. L.; Wang, L. J. CoFe-layered double hydroxide coupled with Pd particles for electrocatalytic ethanol oxidation. ACS Appl. Mater. Interfaces 2023, 15, 27253–27263.

[13]

Wang, L. P.; Yu, Z. Y.; Yan, W.; Liu, L. B.; Wang, M. J.; Kong, Q. Y.; Hu, Z. W.; Geng, H. B.; Huang, X. Q.; Li, Y. H. Palladium chalcogenide nanosheets with p–d orbital hybridization for enhanced alcohol electro-oxidation performance. Appl. Catal. B: Environ. 2024, 343, 123564.

[14]

Yang, X. L.; Li, X. H.; Bu, S.; Wan, T. T.; Xiang, D.; Ye, L. N.; Sun, Z. J.; Wang, K.; Zhu, M. Z.; Li, P. Bismuth incorporation in palladium hydride for the electrocatalytic ethanol oxidation with enhanced CO tolerance. ACS Appl. Mater. Interfaces 2023, 15, 41560–41568.

[15]

Wang, H. J.; Jiao, S. Q.; Liu, S. L.; Deng, K.; Yu, H. J.; Wang, X.; Xu, Y.; Wang, Z. Q.; Wang, L. Ultrafine PdAgAu alloy nanowires for ethanol oxidation electrocatalysis. J. Mater. Chem. A 2022, 10, 24051–24055.

[16]

Xu, L. Y.; Fu, B.; Gao, F. H.; Ma, J. W.; Gao, H. T.; Guo, P. Z. Strain engineering of face-centered cubic Pd-Pb nanosheets boosts electrocatalytic ethanol oxidation. ACS Appl. Energy Mater. 2023, 6, 2471–2478.

[17]

Xu, B. Y.; Liu, T. Y.; Liang, X. C.; Dou, W. J.; Geng, H. B.; Yu, Z. Y.; Li, Y. F.; Zhang, Y.; Shao, Q.; Fan, J. M. et al. Pd-Sb rhombohedra with an unconventional rhombohedral phase as a trifunctional electrocatalyst. Adv. Mater. 2022, 34, 2206528.

[18]

Seh, Z. W.; Kibsgaard, J.; Dickens, C. F.; Chorkendorff, I.; Nørskov, J. K.; Jaramillo, T. F. Combining theory and experiment in electrocatalysis: Insights into materials design. Science 2017, 355, eaad4998.

[19]

Wang, T. L.; Chutia, A.; Brett, D. J. L.; Shearing, P. R.; He, G. J.; Chai, G. L.; Parkin, I. P. Palladium alloys used as electrocatalysts for the oxygen reduction reaction. Energy Environ. Sci. 2021, 14, 2639–2669.

[20]

Luo, M. C.; Zhao, Z. L.; Zhang, Y. L.; Sun, Y. J.; Xing, Y.; Lv, F.; Yang, Y.; Zhang, X.; Hwang, S.; Qin, Y. N. et al. PdMo bimetallene for oxygen reduction catalysis. Nature 2019, 574, 81–85.

[21]

Qiao, S. C.; Shou, H. W.; Xu, W. J.; Cao, Y. Y.; Zhou, Y. Z.; Wang, Z. X.; Wu, X. J.; He, Q.; Song, L. Regulating and identifying the structures of PdAu alloys with splendid oxygen reduction activity for rechargeable zinc-air batteries. Energy Environ. Sci. 2023, 16, 5842–5851.

[22]

Wu, X. D.; Liu, L.; Yuan, K.; Shao, Y. T.; Shen, X. D.; Cui, S.; Chen, X. B. Modulating electronic structure and atomic insights into the novel hierarchically porous PdCuFe trimetallic alloy aerogel for efficient oxygen reduction. Small 2024, 20, 2307243.

[23]

Li, Y. F.; Yuan, X. L.; Wang, P.; Tang, L. L.; He, M.; Li, P. E.; Li, J.; Li, Z. X. Rare earth alloy nanomaterials in electrocatalysis. J. Energy Chem. 2023, 83, 574–594.

[24]

Li, Q. Q.; Sun, C.; Fu, H.; Zhang, S.; Sun, X. L.; Liu, J. C.; Du, Y. P.; Luo, F. Enhanced alkaline hydrogen evolution reaction through lanthanide-modified rhodium intermetallic catalysts. Small 2024, 20, 2307052.

[25]

Zhang, S.; Zeng, Z. C.; Li, Q. Q.; Huang, B. L.; Zhang, X. Y.; Du, Y. P.; Yan, C. H. Lanthanide electronic perturbation in Pt-Ln (La, Ce, Pr and Nd) alloys for enhanced methanol oxidation reaction activity. Energy Environ. Sci. 2021, 14, 5911–5918.

[26]

Zhu, S. Y.; Sun, M. Z.; Mei, B. B.; Yang, L. T.; Chu, Y. Y.; Shi, Z. P.; Bai, J. S.; Wang, X.; Jiang, Z.; Liu, C. P. et al. Intrinsic spin shielding effect in platinum-rare-earth alloy boosts oxygen reduction activity. Natl. Sci. Rev. 2023, 10, nwad162.

[27]

Perdew, J. P.; Burke, K.; Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 1996, 77, 3865–3868.

[28]

Kresse, G.; Furthmüller, J. Efficiency of ab- initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mater. Sci. 1996, 6, 15–50.

[29]

Kresse, G.; Joubert, D. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 1999, 59, 1758–1775.

[30]

Kresse, G.; Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 1996, 54, 11169–11186.

[31]

Hillebrecht, F. U.; Fuggle, J. C.; Bennett, P. A.; Zołnierek, Z.; Freiburg, C. Electronic structure of Ni and Pd alloys. II. X-ray photoelectron core-level spectra. Phys. Rev. B 1983, 27, 2179–2193.

[32]

Kim, K. S.; Gossmann, A. F.; Winograd, N. X-ray photoelectron spectroscopic studies of palladium oxides and the palladium-oxygen electrode. Anal. Chem. 1974, 46, 197–200.

[33]

Tressaud, A.; Khairoun, S.; Touhara, H.; Watanabe, N. X-ray photoelectron spectroscopy of palladium fluorides. Z. Anorg. Allg. Chem. 1986, 540, 291–299.

[34]

Sarma, D. D.; Rao, C. N. R. XPES studies of oxides of second- and third-row transition metals including rare earths. J. Electron. Spectrosc. Relat. Phenom. 1980, 20, 25–45.

[35]

Padalia, B. D.; Lang, W. C.; Norris, P. R.; Watson, L. M.; Fabian, D. J. X-ray photoelectron core-level studies of the heavy rare-earth metals and their oxides. Proc. Roy. Soc. A. Math. Phys. Eng. Sci. 1997, 354, 269–290.

[36]

Kluge, R. M.; Haid, R. W.; Riss, A.; Bao, Y.; Seufert, K.; Schmidt, T. O.; Watzele, S. A.; Barth, J. V.; Allegretti, F.; Auwärter, W. et al. A trade-off between ligand and strain effects optimizes the oxygen reduction activity of Pt alloys. Energy Environ. Sci. 2022, 15, 5181–5191.

[37]

Li, M. F.; Huang, C. M.; Yang, H.; Wang, Y.; Song, X. C.; Cheng, T.; Jiang, J. T.; Lu, Y. F.; Liu, M. C.; Yuan, Q. et al. Programmable synthesis of high-entropy nanoalloys for efficient ethanol oxidation reaction. ACS Nano 2023, 17, 13659–13671.

[38]

Yan, W.; Li, G.; Cui, S. S.; Park, G. S.; Oh, R.; Chen, W. X.; Cheng, X. Y.; Zhang, J. M.; Li, W. Z.; Ji, L. F. et al. Ga-modification near-surface composition of Pt-Ga/C catalyst facilitates high-efficiency electrochemical ethanol oxidation through a C2 intermediate. J. Am. Chem. Soc. 2023, 145, 17220–17231.

[39]

Kulkarni, A.; Siahrostami, S.; Patel, A.; Nørskov, J. K. Understanding catalytic activity trends in the oxygen reduction reaction. Chem. Rev. 2018, 118, 2302–2312.

[40]

Zuo, Y. P.; Rao, D. W.; Li, S.; Li, T. T.; Zhu, G. L.; Chen, S. M.; Song, L.; Chai, Y.; Han, H. Y. Atomic vacancies control of Pd-based catalysts for enhanced electrochemical performance. Adv. Mater. 2018, 30, 1704171.

[41]

Zeng, Q.; Liu, D. Y.; Liu, H.; Cui, P. L.; Hu, C. Q.; Chen, D.; Xu, L.; Wu, X.; Yang, J. Electronic and lattice strain dual tailoring for boosting Pd electrocatalysis in oxygen reduction reaction. iScience 2021, 24, 103332.

[42]

Yu, H. Y.; Li, X. F.; Zhang, T. H.; Liu, J.; Tian, J. H.; Yang, R. Z. Oxygen reduction reaction on Au revisited at different pH values using in situ surface-enhanced Raman spectroscopy. ChemSusChem 2020, 13, 2702–2708.

[43]

Peng, Z. Q.; Chen, Y. H.; Bruce, P. G.; Xu, Y. Direct detection of the superoxide anion as a stable intermediate in the electroreduction of oxygen in a non-aqueous electrolyte containing phenol as a proton source. Angew. Chem., Int. Ed. 2015, 54, 8165–8168.

[44]

Anastasijević, N. A.; Vesović, V.; Adžić, R. R. Determination of the kinetic parameters of the oxygen reduction reaction using the rotating ring-disk electrode: Part II. Applications. J. Electroanal. Chem. Interf. Electrochem. 1987, 229, 317–325.

[45]

Ge, X. M.; Sumboja, A.; Wuu, D.; An, T.; Li, B.; Goh, F. W. T.; Hor, T. S. A.; Zong, Y.; Liu, Z. L. Oxygen reduction in alkaline media: From mechanisms to recent advances of catalysts. ACS Catal. 2015, 5, 4643–4667.

[46]

Feng, Y. G.; Shao, Q.; Ji, Y. J.; Cui, X. N.; Li, Y. Y.; Zhu, X.; Huang, X. Q. Surface-modulated palladium-nickel icosahedra as high-performance non-platinum oxygen reduction electrocatalysts. Sci. Adv. 2018, 4, eaap8817.

[47]

Jin, Y.; Chen, J. D.; Li, R. J.; Chen, J. H.; Wang, J.; Huang, T. T.; Zhang, X. D.; Du, G. F.; Cao, K. S.; Liao, B. H. et al. Modulating the exposed facets of Pd-Pb intermetallic compounds via morphology engineering for efficient multifunctional electrocatalysts. Appl. Surf. Sci. 2024, 648, 159093.

[48]

Chang, J. F.; Wang, G. Z.; Li, C.; He, Y. Q.; Zhu, Y. M.; Zhang, W.; Sajid, M.; Kara, A.; Gu, M.; Yang, Y. Rational design of septenary high-entropy alloy for direct ethanol fuel cells. Joule 2023, 7, 587–602.

Nano Research
Pages 9525-9531
Cite this article:
Li Q, Sun C, Sun X, et al. Synthesis of palladium-rare earth alloy as a high-performance bifunctional catalyst for direct ethanol fuel cells. Nano Research, 2024, 17(11): 9525-9531. https://doi.org/10.1007/s12274-024-6933-6
Topics:

347

Views

0

Crossref

0

Web of Science

0

Scopus

0

CSCD

Altmetrics

Received: 29 May 2024
Revised: 25 July 2024
Accepted: 05 August 2024
Published: 24 August 2024
© Tsinghua University Press 2024
Return