AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

In-situ-selective-UV crosslinking fabrication of solid liquid host guest electrolyte: A facile one-step method realizing highly flexible electrochromic device

Changwei Tan1,2Zishou Hu2Zhiyi Guo3Zheng Cui2Ling Bai1( )Xinzhou Wu2( )Chenchao Huang2( )Wenming Su2( )
School of Materials Science and Engineering, Jiangsu University, Zhenjiang 212013, China
Printable Electronics Research Center, Nano Devices and Materials Division, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China
School of Materials Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China
Show Author Information

Graphical Abstract

The ultraviolet-curable solid–liquid host–guest (UV-SLHG) electrolyte was prepared by a one-step UV curing method. Several aspects of performance are improved by introducing the solid–liquid coexisting microstructure without changing the electrolyte formulation, including excellent adhesion, a 30% increase in tensile characteristics, and a seven-fold increase in ionic conductivity when compared to a fully cured solid-state electrolyte. More than 10,000 bending performances are obtained at a radius of 2.5 mm, which is the best performance of flexible electrochromic device reported so far.

Abstract

Flexible electrochromic devices (FECDs) are promising candidates for the next generation of wearable electronics due to their low operating voltage and energy consumption. For the flexible electrochromic devices, the electrolyte is an important component. Typically, the electrolyte needs to be formulated according to the device structure and usage scenario. A high-performance electrolyte involves consideration of many factors, including choosing the right polymer, solvent, curing agent, and ion type to satisfy particular device specifications. In this work, a ultraviolet-curable solid–liquid host–guest (UV-SLHG) electrolyte is developed. Several aspects of performance are improved by introducing the solid–liquid coexisting microstructure without changing the electrolyte formulation, including excellent adhesion, a 30% increase in tensile characteristics, and a seven-fold increase in ionic conductivity when compared to a fully cured solid-state electrolyte. More importantly, the unique advantage of SLHG electrolytes lies that the thickness will not change significantly during bending. The FECD made by using the UV-SLHG-based electrolyte sustained 10,000 bending cycles at the bending radius of 2.5 mm while maintaining outstanding optical modulation. A wearable ring-type ECD and a battery-free FECD wine label were made as demonstrators. The UV-SLHG strategy is not only suitable for the FECDs but also universally applicable to other electrolyte-based of flexible electronics such as flexible capacitors and batteries.

Electronic Supplementary Material

Video
6921_ESM_Video R1.mp4
6921_ESM_Video R2.mp4
6921_ESM_Video S1.mp4
6921_ESM_Video S10.mp4
6921_ESM_Video S11 .mp4
6921_ESM_Video S12 .mp4
6921_ESM_Video S13 .mp4
6921_ESM_Video S2.mp4
6921_ESM_Video S3.mp4
6921_ESM_Video S4.mp4
6921_ESM_Video S5.mp4
6921_ESM_Video S6.mp4
6921_ESM_Video S7.mp4
6921_ESM_Video S8.mp4
6921_ESM_Video S9.mp4
Download File(s)
6921_ESM.pdf (1.8 MB)

References

[1]

Wang, Z. T.; Xie, H. Y.; Sheng, K.; Khalifa, M. A.; Zeng, Z. Q.; Zheng, J. M.; Xu, C. Y. A transparent to dark non-complementary electrochromic device based on Al3+ guest ions with TMTU/TMFDS2+ redox couple for robust stability. Adv. Opt. Mater. 2022, 10, 2201111.

[2]

Yang, G. J.; Zhang, Y. M.; Cai, Y. R.; Yang, B. G.; Gu, C.; Zhang, S. X. A. Advances in nanomaterials for electrochromic devices. Chem. Soc. Rev. 2020, 49, 8687–8720.

[3]

Gong, H.; Li, A.; Fu, G. X.; Zhang, M. Y.; Zheng, Z. L.; Zhang, Q. Q.; Zhou, K. L.; Liu, J. B.; Wang, H. Ultrathin flexible electrochromic devices enabled by highly transparent ion-conducting films. J. Mater. Chem. A 2023, 11, 8939–8949.

[4]

Cai, G. F.; Chen, J. W.; Xiong, J. Q.; Lee-Sie Eh, A.; Wang, J. X.; Higuchi, M.; Lee, P. S. Molecular level assembly for high-performance flexible electrochromic energy-storage devices. ACS Energy Lett. 2020, 5, 1159–1166.

[5]

Wang, P. N.; Sun, Y.; Li, J.; Zhu, G. Q.; Zhang, X. Q.; Yang, H.; Lin, B. P. Electrode materials for flexible supercapacitor with real-time visual monitoring of potential. Chem. Eng. J. 2022, 446, 137330.

[6]

Yu, H. T.; Qi, M. W.; Wang, J. N.; Yin, Y. Y.; He, Y. W.; Meng, H.; Huang, W. A feasible strategy for the fabrication of camouflage electrochromic fabric and unconventional devices. Electrochem. Commun. 2019, 102, 31–36.

[7]

Kunitski, M.; Eicke, N.; Huber, P.; Köhler, J.; Zeller, S.; Voigtsberger, J.; Schlott, N.; Henrichs, K.; Sann, H.; Trinter, F. et al. Double-slit photoelectron interference in strong-field ionization of the neon dimer. Nat. Commun. 2019, 10, 1.

[8]

Song, R. T.; Li, G. P.; Zhang, Y. Y.; Rao, B.; Xiong, S. X.; He, G. Novel electrochromic materials based on chalcogenoviologens for smart windows, E-price tag and flexible display with improved reversibility and stability. Chem. Eng. J. 2021, 422, 130057.

[9]

Alipoori, S.; Mazinani, S.; Aboutalebi, S. H.; Sharif, F. Review of PVA-based gel polymer electrolytes in flexible solid-state supercapacitors: Opportunities and challenges. J. Energy Storage 2020, 27, 101072.

[10]

Li, G.; Zhang, J.; Huang, F.; Wu, S. Y.; Wang, C. H.; Peng, S. H. Transparent, stretchable and high-performance triboelectric nanogenerator based on dehydration-free ionically conductive solid polymer electrode. Nano Energy 2021, 88, 106289.

[11]

Silva, M. M.; Barros, S. C.; Smith, M. J.; MacCallum, J. R. Study of novel lithium salt-based, plasticized polymer electrolytes. J. Power Sources 2002, 111, 52–57.

[12]

Silva, M. M.; Barros, S. C.; Smith, M. J.; MacCallum, J. R. Characterization of solid polymer electrolytes based on poly (trimethylenecarbonate) and lithium tetrafluoroborate. Electrochim. Acta 2004, 49, 1887–1891.

[13]

Atik, J.; Diddens, D.; Thienenkamp, J. H.; Brunklaus, G.; Winter, M.; Paillard, E. Cation-assisted lithium-ion transport for high-performance PEO-based ternary solid polymer electrolytes. Angew. Chem., Int. Ed. 2021, 60, 11919–11927.

[14]

Zhang, Q. Q.; Liu, K.; Ding, F.; Liu, X. J. Recent advances in solid polymer electrolytes for lithium batteries. Nano Res. 2017, 10, 4139–4174.

[15]

Zhao, S. Q.; Liu, Y. H.; Liu, Y. H.; Ming, Z.; Chen, C.; Xu, W. W.; Chen, L. S.; Huang, W. B.; Huang, W. B.; Huang, W. B. Highly flexible electrochromic devices enabled by electroplated nickel grid electrodes and multifunctional hydrogels. Opt. Express 2019, 27, 29547–29557.

[16]

Wu, X. L.; Bai, Z. Y.; Bao, B. W.; Zhang, Q. H.; Jiang, W. Z.; Li, Y. G.; Hou, C. Y.; Li, K. R.; Wang, H. Z. A lithium-salt-free, hydrophobic, solid-state poly(ionic liquid) electrolyte enables rapid assembly of unencapsulated, removable electrochromic “window tint film”. Adv. Funct. Mater. 2024, 34, 2312358.

[17]

Liu, Z. Y.; Zhang, K.; Huang, G. J.; Xu, B. Q.; Hong, Y. L.; Wu, X. W.; Nishiyama, Y.; Horike, S.; Zhang, G.; Kitagawa, S. Highly processable covalent organic framework gel electrolyte enabled by side-chain engineering for lithium-ion batteries. Angew. Chem., Int. Ed. 2022, 61, e202110695.

[18]

Poh, W. C.; Eh, A. L. S.; Wu, W. T.; Guo, X. Y.; Lee, P. S. Rapidly photocurable solid-state poly(ionic liquid) ionogels for thermally robust and flexible electrochromic devices. Adv. Mater. 2022, 34, 2206952.

[19]

Song, Z. Y.; Wang, B.; Zhang, W.; Zhu, Q. Q.; Elezzabi, A. Y.; Liu, L. H.; Yu, W. W.; Li, H. Z. Fast and stable zinc anode-based electrochromic displays enabled by bimetallically doped vanadate and aqueous Zn2+/Na+ hybrid electrolytes. Nano-Micro Lett. 2023, 15, 229.

[20]

Sun, P. Y.; Chen, J.; Li, Y. W.; Tang, X. Q.; Sun, H. Z.; Song, G.; Mu, X. Y.; Zhang, T. Y.; Zha, X.; Li, F. F. et al. Deep eutectic solvent-based gel electrolytes for flexible electrochromic devices with excellent high/low temperature durability. InfoMat 2023, 5, e12363.

[21]

Kim, J. W.; Kim, S.; Jeong, Y. R.; Kim, J.; Kim, D. S.; Keum, K.; Lee, H.; Ha, J. S. Self-healing strain-responsive electrochromic display based on a multiple crosslinked network hydrogel. Chem. Eng. J. 2022, 430, 132685.

[22]

Li, X. F.; Wang, X. K.; You, L. Y.; Zhao, K. J.; Mei, J. G. Improving electrochemical cycling stability of conjugated yellow-to-transmissive electrochromic polymers by regulating effective overpotentials. ACS Mater. Lett. 2022, 4, 336–342.

[23]

Huang, C. C.; Hu, Z. S.; Yi, Y. Q. Q.; Chen, X. L.; Wu, X. Z.; Su, W. M.; Cui, Z. High performance printed organic electrochromic devices based on an optimized UV curable solid-state electrolyte. Nanoscale 2022, 14, 14122–14128.

[24]

Xiao, P. T.; Yun, X. R.; Chen, Y. F.; Guo, X. W.; Gao, P.; Zhou, G. M.; Zheng, C. M. Insights into the solvation chemistry in liquid electrolytes for lithium-based rechargeable batteries. Chem. Soc. Rev. 2023, 52, 5255–5316.

[25]

Luo, Z. H.; Li, W. J.; Yan, J. P.; Sun, J. Roles of ionic liquids in adjusting nature of ionogels: A mini review. Adv. Funct. Mater. 2022, 32, 2203988.

[26]

Fu, Q. J.; Hao, S. W.; Meng, L.; Xu, F.; Yang, J. Engineering self-adhesive polyzwitterionic hydrogel electrolytes for flexible zinc-ion hybrid capacitors with superior low-temperature adaptability. ACS Nano 2021, 15, 18469–18482.

[27]

Tesler, A. B.; Sheng, Z. Z.; Lv, W.; Fan, Y.; Fricke, D.; Park, K. C.; Alvarenga, J.; Aizenberg, J.; Hou, X. Metallic liquid gating membranes. ACS Nano 2020, 14, 2465–2474.

[28]

Sheng, Z. Z.; Ding, Y.; Li, G. Y.; Fu, C.; Hou, Y. L.; Lyu, J.; Zhang, K.; Zhang, X. T. Solid–liquid host–guest composites: The marriage of porous solids and functional liquids. Adv. Mater. 2021, 33, 2104851.

[29]

Sheng, Z. Z.; Wang, H. L.; Tang, Y. L.; Wang, M.; Huang, L. Z.; Min, L. L.; Meng, H. Q.; Chen, S. Y.; Jiang, L.; Hou, X. Liquid gating elastomeric porous system with dynamically controllable gas/liquid transport. Sci. Adv. 2018, 4, eaao6724.

[30]

Wan, J. Y.; Xie, J.; Kong, X.; Liu, Z.; Liu, K.; Shi, F. F.; Pei, A.; Chen, H.; Chen, W.; Chen, J. et al. Ultrathin, flexible, solid polymer composite electrolyte enabled with aligned nanoporous host for lithium batteries. Nat. Nanotechnol. 2019, 14, 705–711.

[31]

Hu, Z. S.; Tang, X. Q.; Chen, X. L.; Huang, C. C.; Xu, W. Y.; Nie, S. H.; Zhao, Z. G.; Wu, X. Z.; Su, W. M.; Cui, Z. Ultra-low resistivity copper mesh as embedded current collector layer for inkjet-printed flexible electrochromic device realizing fast response and uniform coloration. Adv. Mater. Technol. 2023, 8, 2201037.

[32]

Kang, W. P.; Bao, Y.; Wang, H. L.; Cao, N. P.; Cui, S. X. Force-induced enhancement of hydrophilicity of individual polymethyl methacrylate chain. Chin. J. Chem. 2023, 41, 2289–2295.

[33]

Santiago, S.; Aller, M.; Del Campo, F. J.; Guirado, G. Screen-printable electrochromic polymer inks and ion gel electrolytes for the design of low-power, flexible electrochromic devices. Electroanalysis 2019, 31, 1664–1671.

[34]

Tang, Z. Y.; Fujimoto, K.; Okazaki, S. A comparison of the brittle PMMA with the ductile PC on the elasticity and yielding from a molecular dynamics perspective. Polymer 2021, 226, 123809.

[35]

Fujimoto, K.; Tang, Z. Y.; Shinoda, W.; Okazaki, S. All-atom molecular dynamics study of impact fracture of glassy polymers. I: Molecular mechanism of brittleness of PMMA and ductility of PC. Polymer 2019, 178, 121570.

[36]

Ding, Y. F.; Sun, H. H.; Li, Z. H.; Jia, C. M.; Ding, X. G.; Li, C.; Wang, J. G.; Li, Z. Galvanic-driven deposition of large-area Prussian blue films for flexible battery-type electrochromic devices. J. Mater. Chem. A 2023, 11, 2868–2875.

[37]

Peng, H. C.; Pan, M. F.; Jiang, H.; Huang, W. H.; Wang, X.; Yang, Q.; Chen, S.; Yan, B. Cobweb-inspired quintuple network structures toward high-performance wearable electrochromic devices with excellent bending resistance. ACS Appl. Mater. Interfaces 2022, 14, 42402–42411.

[38]

Ye, W. J.; Guo, X.; Zhang, X. J.; Liu, P. Multicolored and high optical contrast flexible electrochromic devices based on viologen derivatives. Synth. Met. 2022, 287, 117076.

[39]

Singh, R.; Tharion, J.; Murugan, S.; Kumar, A. ITO-free solution-processed flexible electrochromic devices based on PEDOT:PSS as transparent conducting electrode. ACS Appl. Mater. Interfaces 2017, 9, 19427–19435.

[40]

Zhang, S. H.; Chen, S.; Hu, F.; Ding, L.; Gu, Y. C.; Yan, B.; Yang, F.; Jiang, M. J.; Cao, Y. Patterned flexible electrochromic device based on monodisperse silica/polyaniline core/shell nanospheres. J. Electrochem. Soc. 2019, 166, H343–H350.

[41]

Bai, Z. Y.; Wu, X. L.; Fang, R.; Lu, Z. Q.; Hou, C. Y.; Zhang, Q. H.; Li, Y. G.; Li, K. R.; Wang, H. Z. Divalent viologen cation-based ionogels facilitate reversible intercalation of anions in PProDOT-Me2 for flexible electrochromic displays. Adv. Funct. Mater. 2024, 34, 2312587.

Nano Research
Pages 9712-9720
Cite this article:
Tan C, Hu Z, Guo Z, et al. In-situ-selective-UV crosslinking fabrication of solid liquid host guest electrolyte: A facile one-step method realizing highly flexible electrochromic device. Nano Research, 2024, 17(11): 9712-9720. https://doi.org/10.1007/s12274-024-6921-x
Topics:

591

Views

3

Crossref

3

Web of Science

3

Scopus

0

CSCD

Altmetrics

Received: 02 June 2024
Revised: 10 July 2024
Accepted: 29 July 2024
Published: 17 August 2024
© Tsinghua University Press 2024
Return