Discover the SciOpen Platform and Achieve Your Research Goals with Ease.
Search articles, authors, keywords, DOl and etc.
Intrinsic ferroelectric materials play a critical role in the development of high-density integrated device. Despite some two-dimensional (2D) ferroelectrics have been reported, the research on one-dimensional (1D) intrinsic ferroelectric materials remains relatively scare since 1D atomic structures limit their van der Waals (vdW) epitaxy growth. Here, we report the synthesis of 1D intrinsic vdW ferroelectric SbSI nanowires via a confined-space chemical vapor deposition. By precisely controlling the partial vapor pressure of I2 and reaction temperature, we can effectively manipulate kinetics and thermodynamics processes, and thus obtain high quality of SbSI nanowires, which is determined by Raman spectroscopy and high-resolution scanning transmission electron microscopy characterizations. The ferroelectricity in SbSI is confirmed by piezo-response force microscopy measurements and the ferroelectric transition temperature of 300 K is demonstrated by second harmonic generation. Moreover, the in-plane polarization switching can be maintained in the thin SbSI nanowires with a thickness of 20 nm. Our prepared 1D vdW ferroelectric SbSI nanowires not only enrich the vdW ferroelectric systems, but also open a new possibility for high-power energy storage nanodevices.
Garcia, V.; Bibes, M. Ferroelectric tunnel junctions for information storage and processing. Nat. Commun. 2014, 5, 4289.
Dubourdieu, C.; Bruley, J.; Arruda, T. M.; Posadas, A.; Jordan-Sweet, J.; Frank, M. M.; Cartier, E.; Frank, D. J.; Kalinin, S. V.; Demkov, A. A. et al. Switching of ferroelectric polarization in epitaxial BaTiO3 films on silicon without a conducting bottom electrode. Nat. Nanotechnol. 2013, 8, 748–754.
Fang, H. Z.; Wang, Y.; Shang, S. L.; Liu, Z. K. Nature of ferroelectric-paraelectric phase transition and origin of negative thermal expansion in PbTiO3. Phys. Rev. B 2015, 91, 024104.
Lee, S. R.; Baasandorj, L.; Chang, J. W.; Hwang, I. W.; Kim, J. R.; Kim, J. G.; Ko, K. T.; Shim, S. B.; Choi, M. W.; You, M. et al. First observation of ferroelectricity in ~ 1 nm ultrathin semiconducting BaTiO3 films. Nano Lett. 2019, 19, 2243–2250.
Nuraje, N.; Su, K. Perovskite ferroelectric nanomaterials. Nanoscale 2013, 5, 8752–8780.
Xi, Z. N.; Ruan, J. J.; Li, C.; Zheng, C. Y.; Wen, Z.; Dai, J. Y.; Li, A. D.; Wu, D. Giant tunnelling electroresistance in metal/ferroelectric/semiconductor tunnel junctions by engineering the Schottky barrier. Nat. Commun. 2017, 8, 15217.
Cohen, R. E. Origin of ferroelectricity in perovskite oxides. Nature 1992, 358, 136–138.
Zhang, D. W.; Schoenherr, P.; Sharma, P.; Seidel, J. Ferroelectric order in van der Waals layered materials. Nat. Rev. Mater. 2023, 8, 25–40.
Jin, T. Y.; Mao, J. Y.; Gao, J.; Han, C.; Loh, K. P.; Wee, A. T. S.; Chen, W. Ferroelectrics-integrated two-dimensional devices toward next-generation electronics. ACS Nano 2022, 16, 13595–13611.
Zhou, J. D.; Lin, J. H.; Huang, X. W.; Zhou, Y.; Chen, Y.; Xia, J.; Wang, H.; Xie, Y.; Yu, H. M.; Lei, J. C. et al. A library of atomically thin metal chalcogenides. Nature 2018, 556, 355–359.
Zhou, J. D.; Zhu, C.; Zhou, Y.; Dong, J. C.; Li, P. L.; Zhang, Z. W.; Wang, Z.; Lin, Y. C.; Shi, J.; Zhang, R. W. et al. Composition and phase engineering of metal chalcogenides and phosphorous chalcogenides. Nat. Mater. 2023, 22, 450–458.
Li, J.; Cheng, S.; Liu, Z. X.; Zhang, W. F.; Chang, H. X. Centimeter-scale, large-area, few-layer 1T′-WTe2 films by chemical vapor deposition and its long-term stability in ambient condition. J. Phys. Chem. C 2018, 122, 7005–7012.
Higashitarumizu, N.; Kawamoto, H.; Lee, C. J.; Lin, B. H.; Chu, F. H.; Yonemori, I.; Nishimura, T.; Wakabayashi, K.; Chang, W. H.; Nagashio, K. Purely in-plane ferroelectricity in monolayer SnS at room temperature. Nat. Commun. 2020, 11, 2428.
Han, W.; Zheng, X. D.; Yang, K.; Tsang, C. S.; Zheng, F. Y.; Wong, L. W.; Lai, K. H.; Yang, T. F.; Wei, Q.; Li, M. J. et al. Phase-controllable large-area two-dimensional In2Se3 and ferroelectric heterophase junction. Nat. Nanotechnol. 2023, 18, 55–63.
Fei, Z. Y.; Zhao, W. J.; Palomaki, T. A.; Sun, B. S.; Miller, M. K.; Zhao, Z. Y.; Yan, J. Q.; Xu, X. D.; Cobden, D. H. Ferroelectric switching of a two-dimensional metal. Nature 2018, 560, 336–339.
Xiao, J.; Zhu, H. Y.; Wang, Y.; Feng, W.; Hu, Y. X.; Dasgupta, A.; Han, Y. M.; Wang, Y.; Muller, D. A.; Martin, L. W. et al. Intrinsic two-dimensional ferroelectricity with dipole locking. Phys. Rev. Lett. 2018, 120, 227601.
Wu, J. X.; Yuan, H. T.; Meng, M. M.; Chen, C.; Sun, Y.; Chen, Z. Y.; Dang, W. H.; Tan, C. W.; Liu, Y. J.; Yin, J. B. et al. High electron mobility and quantum oscillations in non-encapsulated ultrathin semiconducting Bi2O2Se. Nat. Nanotechnol. 2017, 12, 530–534.
Ghorpade, U. V.; Suryawanshi, M. P.; Green, M. A.; Wu, T.; Hao, X. J.; Ryan, K. M. Emerging chalcohalide materials for energy applications. Chem. Rev. 2023, 123, 327–378.
Peng, B.; Xu, K.; Zhang, H.; Ning, Z. Y.; Shao, H. Z.; Ni, G.; Li, J.; Zhu, Y. Y.; Zhu, H. Y.; Soukoulis, C. M. 1D SbSeI, SbSI, and SbSBr with high stability and novel properties for microelectronic, optoelectronic, and thermoelectric applications. Adv. Theory Simul. 2018, 1, 1700005.
Zhang, F. M.; Chen, W. Z.; Zhang, Y. G.; Yin, H. B. 1D group V-VI-VII ternary nanowires: Moderate band gaps, easy to exfoliate from bulk, and unexpected ferroelectricity. Phys. Chem. Chem. Phys. 2023, 25, 6112–6120.
Lu, X. F.; Zhang, C. P.; Wang, N. Z.; Zhao, D.; Zhou, X.; Gao, W. B.; Chen, X. H.; Law, K. T.; Loh, K. P. Nonlinear transport and radio frequency rectification in BiTeBr at room temperature. Nat. Commun. 2024, 15, 245.
Amoroso, D.; Picozzi, S. Ab initio approach to structural, electronic, and ferroelectric properties of antimony sulphoiodide. Phys. Rev. B 2016, 93, 214106.
Audzijonis, A.; Grigas, J.; Kajokas, A.; Kvedaravičius, S.; Paulikas, V. Origin of ferroelectricity in SbSI. Ferroelectrics 1998, 219, 37–45.
Ramachandran, A. A.; Krishnan, B.; Devasia, S.; Avellaneda, D. A.; Palma, M. I. M.; Martinez, J. A. A.; Shaji, S. Photosensitive antimony triiodide thin films by rapid iodization of chemically deposited antimony sulfide. Mater. Res. Bull. 2021, 142, 111382.
Cho, I.; Min, B. K.; Joo, S. W.; Sohn, Y. One-dimensional single crystalline antimony sulfur iodide, SbSI. Mater. Lett. 2012, 86, 132–135.
Yang, F.; Sendova, M.; Jacobs-Gedrim, R. B.; Song, E. S.; Green, A.; Thiesen, P.; Diebold, A.; Yu, B. Rapid optical determination of topological insulator nanoplate thickness and oxidation. AIP Adv. 2017, 7, 015114.
Meng, S.; Yang, Y.; Dai, X. Y.; Tang, Y.; He, M. F.; Gu, Y. R.; Jiang, R. B.; Ding, F.; Xu, H. Robust synthesis of large-area PtSe2 microbelts by step-induced separation growth on Au(001) substrate for the hydrogen evolution reaction. Adv. Funct. Mater. 2024, 34, 2312165.
Zhang, B.; Yun, C.; Wu, H.; Zhao, Z. J.; Zeng, Y.; Liang, D.; Shen, T.; Zhang, J. E.; Huang, X. X.; Song, J. P. et al. Two-dimensional wedge-shaped magnetic EuS: Insight into the substrate step-guided epitaxial synthesis on sapphire. J. Am. Chem. Soc. 2022, 144, 19758–19769.
Fu, J. H.; Min, J. C.; Chang, C. K.; Tseng, C. C.; Wang, Q. X.; Sugisaki, H.; Li, C. Y.; Chang, Y. M.; Alnami, I.; Syong, W. R. et al. Oriented lateral growth of two-dimensional materials on c-plane sapphire. Nat. Nanotechnol. 2023, 18, 1289–1294.
Xu, Y. H.; Del Monte, F.; Mackenzie, J. D.; Namjoshi, K.; Muggli, P.; Joshi, C. Nanocomposite of semiconducting ferroelectric antimony sulphoiodide dots-doped glasses. Ferroelectrics 1999, 230, 11–20.
Furman, E.; Brafman, O.; Makovsky, J. Phonons and ferroelectric phase transitions in SbSBr and SbSI and their solid solutions. Phys. Rev. B 1973, 8, 2341–2348.
Jie, W. J.; Chen, X.; Li, D.; Xie, L.; Hui, Y. Y.; Lau, S. P.; Cui, X. D.; Hao, J. H. Layer-dependent nonlinear optical properties and stability of non-centrosymmetric modification in few-layer GaSe sheets. Angew. Chem., Int. Ed. 2015, 54, 1185–1189.
Grigas, J.; Talik, E.; Lazauskas, V. Splitting of the XPS in ferroelectric SbSI crystals. Ferroelectrics 2003, 284, 147–160.
Purusothaman, Y.; Alluri, N. R.; Chandrasekhar, A.; Kim, S. J. Photoactive piezoelectric energy harvester driven by antimony sulfoiodide (SbSI): A AVBVICVII class ferroelectric-semiconductor compound. Nano Energy 2018, 50, 256–265.
Luo, P.; Zhuge, F. W.; Wang, F. K.; Lian, L. Y.; Liu, K. L.; Zhang, J. B.; Zhai, T. Y. PbSe quantum dots sensitized high-mobility Bi2O2Se nanosheets for high-performance and broadband photodetection beyond 2 μm. ACS Nano 2019, 13, 9028–9037.
Shen, J. D.; Liu, X.; Wang, C. R.; Wang, J. L.; Wu, B. H.; Chen, X. S.; Yi, G. C. SbSI microrod based flexible photodetectors. J. Phys. D: Appl. Phys. 2020, 53, 345106.
Gödel, K. C.; Steiner, U. Thin film synthesis of SbSI micro-crystals for self-powered photodetectors with rapid time response. Nanoscale 2016, 8, 15920–15925.
Manders, J. R.; Lai, T. H.; An, Y. B.; Xu, W. K.; Lee, J.; Kim, D. Y.; Bosman, G.; So, F. Low-noise multispectral photodetectors made from all solution-processed inorganic semiconductors. Adv. Funct. Mater. 2014, 24, 7205–7210.
Sun, L.; Wang, C. R.; Xu, L.; Wang, J. L.; Liu, X. Y.; Chen, X. S.; Yi, G. C. SbSI whisker/PbI2 flake mixed-dimensional van der Waals heterostructure for photodetection. CrystEngComm 2019, 21, 3779–3787.
Yang, W.; Yang, J. H.; Zhao, K.; Gao, Q.; Liu, L. Y.; Zhou, Z. Q.; Hou, S. J.; Wang, X. T.; Shen, G. Z.; Pang, X. C. et al. Low-noise dual-band polarimetric image sensor based on 1D Bi2S3 nanowire. Adv. Sci. 2021, 8, 2100075.
Chen, G. H.; Li, W.; Yu, Y. Q.; Yang, Q. Fast and low-temperature synthesis of one-dimensional (1D) single-crystalline SbSI microrod for high performance photodetector. RSC Adv. 2015, 5, 21859–21864.
Law, J. B. K.; Thong, J. T. L. Simple fabrication of a ZnO nanowire photodetector with a fast photoresponse time. Appl. Phys. Lett. 2006, 88, 133114.
Collins, L.; Liu, Y. T.; Ovchinnikova, O. S.; Proksch, R. Quantitative electromechanical atomic force microscopy. ACS Nano 2019, 13, 8055–8066.
Gruverman, A.; Alexe, M.; Meier, D. Piezoresponse force microscopy and nanoferroic phenomena. Nat. Commun. 2019, 10, 1661.