Discover the SciOpen Platform and Achieve Your Research Goals with Ease.
Search articles, authors, keywords, DOl and etc.
Nicotinamide adenine dinucleotide (NAD+/NADH) pools homeostasis is recognized as an Achilles’ Heel in tumor metabolism reprogramming. However, mitochondria can enable cancer cells to overcome NADH exhaustion by providing NAD+ precursors and/or intermediates, thus promoting their survival rate and potentially driving uncontrollable proliferation. Here, a synergistic intervention NAD+/NADH homeostasis and mitochondrial metabolism strategy with magnetic resonance imaging (MRI)/photoacoustic imaging (PAI) are developed to address grand challenge of metabolic reprogramming for antitumor bioenergetic therapy. A mitochondrial-targeted cascade amplification nanoplatform ([β-MQ]TRL), triggered by NAD(P)H: quinone oxidoreductase-1 (NQO1), can enable a continuous depletion of cytosol NADH until cell death. The end-product, hydrogen peroxide (H2O2), can be further catalytically converted to higher toxic ·OH in proximity to mitochondria based on [β-MQ]TRL mediated Fenton-like reaction, hijacking tumorigenic energy sources and leading to mitochondrial dysfunction. Additionally, the mild thermal ablation enabled by [β-MQ]TRL further amplifies this cascade reaction to effectively prevent tumor metastasis and recurrence. This synchronous intervention strategy with MRI/PAI establishes unprecedented efficiency in antitumor bioenergetic therapy in vivo, which shows excellent promise for clinical application.
Schiliro, C.; Firestein, B. L. Mechanisms of metabolic reprogramming in cancer cells supporting enhanced growth and proliferation. Cells 2021, 10, 1056.
Fendt, S. M.; Frezza, C.; Erez, A. Targeting metabolic plasticity and flexibility dynamics for cancer therapy. Cancer Discov. 2020, 10, 1797–1807.
DeBerardinis, R. J.; Chandel, N. S. Fundamentals of cancer metabolism. Sci. Adv. 2016, 2, e1600200.
Stine, Z. E.; Schug, Z. T.; Salvino, J. M.; Dang, C. V. Targeting cancer metabolism in the era of precision oncology. Nat. Rev. Drug Discov. 2022, 21, 141–162.
Elia, I.; Haigis, M. C. Metabolites and the tumour microenvironment: From cellular mechanisms to systemic metabolism. Nat. Metab. 2021, 3, 21–32.
Zhao, H. N.; Zou, Y. Y.; Wang, W.; Liu, Y. H.; Li, Y. Q.; Jin, B. W.; Li, J. H.; Chen, W. S.; Liu, Y. N. Nanotandem-rocket releases messenger to disrupt metabolic communication for antitumor immunotherapy. Nano Res. 2023, 16, 7095–7107.
Martinez-Outschoorn, U. E.;Peiris-Pagés, M.;Pestell, R. G.;Sotgia, F.; Lisanti, M. P. Cancer metabolism: a therapeutic perspective. Nat. Rev. Clin. Oncol. 2017, 14, 11–31.
Jin, J.; Byun, J. K.;Choi, Y. K.; Park, K. G. Targeting glutamine metabolism as a therapeutic strategy for cancer. Exp. Mol. Med. 2023, 55, 706–715.
Martínez-Reyes, I.; Chandel, N. S. Cancer metabolism: Looking forward. Nat. Rev. Cancer 2021, 21, 669–680.
Liu, X.; Li, J. K.; Zitolo, A.; Gao, M.; Jiang, J.; Geng, X. T.; Xie, Q. Q.; Wu, D.; Zheng, H. Z.; Cai, X. M. et al. Doped graphene to mimic the bacterial nadh oxidase for one-step NAD+ supplementation in mammals. J. Am. Chem. Soc. 2023, 145, 3108–3120.
Ju, H. Q.; Lu, Y. X.; Wu, Q. N.; Liu, J.; Zeng, Z. L.; Mo, H. Y.; Chen, Y.; Tian, T.; Wang, Y.; Kang, T. B. et al. Disrupting G6PD-mediated Redox homeostasis enhances chemosensitivity in colorectal cancer. Oncogene 2017, 36, 6282–6292.
Liu, R. L.; Li, W. F.; Tao, B. B.; Wang, X. J.; Yang, Z.; Zhang, Y. J.; Wang, C. Y.; Liu, R. Z.; Gao, H.; Liang, J. et al. Tyrosine phosphorylation activates 6-phosphogluconate dehydrogenase and promotes tumor growth and radiation resistance. Nat. Commun. 2019, 10, 991.
Chiarugi, A.; Dölle, C.; Felici, R.; Ziegler, M. The NAD metabolome-a key determinant of cancer cell biology. Nat. Rev. Cancer 2012, 12, 741–752.
Xie, N.; Zhang, L.; Gao, W.; Huang, C. H.; Huber, P. E.; Zhou, X. B.; Li, C. L.; Shen, G. B.; Zou, B. W. NAD+ metabolism: Pathophysiologic mechanisms and therapeutic potential. Signal Transduct. Target. Ther. 2020, 5, 227.
Cantó, C.; Menzies, K. J.; Auwerx, J. NAD+ Metabolism and the control of energy homeostasis: A balancing act between mitochondria and the nucleus. Cell Metab. 2015, 22, 31–53.
Alano, C. C.; Garnier, P.; Ying, W. H.; Higashi, Y.; Kauppinen, T. M.; Swanson, R. A. NAD+ depletion is necessary and sufficient forPoly(ADP-Ribose) polymerase-1-mediated neuronal death. J. Neurosci. 2010, 30, 2967–2978.
Wei, Q. Y.; Qian, Y.; Yu, J.; Wong, C. C. Metabolic rewiring in the promotion of cancer metastasis: Mechanisms and therapeutic implications. Oncogene 2020, 39, 6139–6156.
Cheung, E. C.; Vousden, K. H. The role of ROS in tumour development and progression. Nat. Rev. Cancer 2022, 22, 280–297.
Faria, A. R.; Silvestre, O. F.; Maibohm, C.; Adão, R. M. R.; Silva, B. F. B.; Nieder, J. B. Cubosome nanoparticles for enhanced delivery of mitochondria anticancer drug elesclomol and therapeutic monitoring via sub-cellular NAD(P)H multi-photon fluorescence lifetime imaging. Nano Res. 2019, 12, 991–998.
Gong, Q. J.; Hu, J. B.; Wang, P. F.; Li, X.; Zhang, X. J. A comprehensive review on β-lapachone: Mechanisms, structural modifications, and therapeutic potentials. Eur. J. Med. Chem. 2021, 210, 112962.
Gong, Q. J.; Li, X.; Li, T.; Wu, X. S.; Hu, J. B.; Yang, F. L.; Zhang, X. J. A carbon-carbon bond cleavage-based prodrug activation strategy applied to β-lapachone for cancer-specific targeting. Angew Chem., Int. Ed. 2022, 61, e202210001.
Gong, X. D.; Wang, J.; Yang, L. L.; Li, L. J.; Gao, X. Y.; Sun, X.; Bai, J. F.; Liu, J. C.; Pu, X.; Wang, Y. D. Enhanced chemodynamic therapy mediated by a tumor-specific catalyst in synergy with mitophagy inhibition improves the efficacy for endometrial cancer. Small 2023, 19, 2301497.
Li, X. G.; Liu, Z. D.; Zhang, A. L.; Han, C. H.; Shen, A. J.; Jiang, L. X.; Boothman, D. A.; Qiao, J.; Wang, Y.; Huang, X. M. et al. NQO1 targeting prodrug triggers innate sensing to overcome checkpoint blockade resistance. Nat. Commun. 2019, 10, 3251.
Pink, J. J.; Planchon, S. M.; Tagliarino, C.; Varnes, M. E.; Siegel, D.; Boothman, D. A. NAD(P)H: Quinone oxidoreductase activity is the principal determinant of β-lapachone cytotoxicity. J. Biol. Chem. 2000, 275, 5416–5424.
Li, Y. R.; Feng, M. Y.; Guo, T.; Wang, Z.; Zhao, Y. J. Tailored beta-lapachone nanomedicines for cancer-specific therapy. Adv. Healthc. Mater. 2023, 12, e2300349.
Gomes, C. L.; de Albuquerque Wanderley Sales, V.; de Melo, C. G.; da Silva, R. M. F.; Nishimura, R. H. V.; Rolim, L. A.; Neto, P. J. R. Beta-lapachone: Natural occurrence, physicochemical properties, biological activities, toxicity and synthesis. Phytochemistry 2021, 186, 112713.
VanLinden, M. R.;Dölle, C.;Pettersen, I. K.;Kulikova, V. A.;Niere, M.;Agrimi, G.;Dyrstad, S. E.;Palmieri, F.;Nikiforov, A. A.;Tronstad, K. J.; Ziegler, M. Subcellular distribution of NAD+ between cytosol and mitochondria determines the metabolic profile of human cells. J. Biol. Chem. 2015, 290, 27644–27659.
Pittelli, M.; Formentini, L.; Faraco, G.; Lapucci, A.; Rapizzi, E.; Cialdai, F.; Romano, G.; Moneti, G.; Moroni, F.; Chiarugi, A. Inhibition of nicotinamide phosphoribosyltransferase: Cellular bioenergetics reveals a mitochondrial insensitive nad pool. J. Biol. Chem. 2010, 285, 34106–34114.
Stein, L. R.; Imai, S. The dynamic regulation of NAD metabolism in mitochondria. Trends Endocrinol. Metab. 2012, 23, 420–428.
Yang, H. Y.; Yang, T. L.; Baur, J. A.; Perez, E.; Matsui, T.; Carmona, J. J.; Lamming, D. W.; Souza-Pinto, N. C.; Bohr, V. A.; Rosenzweig, A. et al. Nutrient-sensitive mitochondrial NAD+ levels dictate cell survival. Cell 2007, 130, 1095–1107.
Fulda, S.; Galluzzi, L.; Kroemer, G. Targeting mitochondria for cancer therapy. Nat. Rev. Drug Discov. 2010, 9, 447–464.
Li, Z.; Zou, J. H.; Chen, X. Y. In response to precision medicine: Current subcellular targeting strategies for cancer therapy. Adv. Mater. 2023, 35, 2209529.
Chen, C.; Li, Q. Y.; Xing, L. Y.; Zhou, M. L.; Luo, C. H.; Li, S. J.; Li, L.; Huang, Y. Co-delivery of mitochondrial targeted lonidamine and PIN1 inhibitor ATRA by nanoparticulate systems for synergistic metastasis suppression. Nano Res. 2022, 15, 3376–3386.
Qu, H. J.; Chen, H.; Cheng, W.; Pan, Y. Q.; Duan, Z. R.; Wang, Y. J.; Liang, X. J.; Xue, X. D. Charge-reversible crosslinked nanoparticle for pro-apoptotic peptide delivery and synergistic photodynamic cancer therapy. Nano Res. 2023, 16, 13267–13282.
Yang, J. J.; Griffin, A.; Qiang, Z.; Ren, J. Organelle-targeted therapies: A comprehensive review on system design for enabling precision oncology. Signal Transduct. Target. Ther. 2022, 7, 379.
Li, X. L.; Duan, Z. Y.; Chen, X. T.; Pan, D. Y.; Luo, Q.; Gu, L.; Xu, G.; Li, Y. G.; Zhang, H.; Gong, Q. Y. et al. Impairing tumor metabolic plasticity via a stable metal-phenolic-based polymeric nanomedicine to suppress colorectal cancer. Adv. Mater. 2023, 35, e2300548.
Chen, W. H.; Luo, G. F.; Zhang, X. Z. Recent advances in subcellular targeted cancer therapy based on functional materials. Adv. Mater. 2019, 31, 1802725.
Song, X. Y.; Li, F. Y.; Tian, F.; Ren, L. L.; Wang, Q.; Jiang, C. F.; Yan, T.; Zhang, S. S. Upconversion nanoparticle-based optogenetic nanosystem for photodynamic therapy and cascade gene therapy. Acta Biomater. 2023, 157, 538–550.
Jia, Q. Y.; Ge, J. C.; Liu, W. M.; Zheng, X. L.; Chen, S. Q.; Wen, Y. M.; Zhang, H. Y.; Wang, P. A magnetofluorescent carbon dot assembly as an acidic H2O2-driven oxygenerator to regulate tumor hypoxia for simultaneous bimodal imaging and enhanced photodynamic therapy. Adv. Mater. 2018, 30, e1706090.
Valencia, P. M.; Hanewich-Hollatz, M. H.; Gao, W. W.; Karim, F.; Langer, R.; Karnik, R.; Farokhzad, O. C. Effects of ligands with different water solubilities on self-assembly and properties of targeted nanoparticles. Biomaterials 2011, 32, 6226–6233.
Wang, X. Z.; Wang, L.; Jin, T. D.; Sun, K. J.; Yang, J. Y. pH/Viscosity dual-response fluorescent probes as highly selective tumor visualization tools. Sens. Actuators, B 2023, 375, 132935.
Wang, Y. D.; Gao, F. C.; Li, X. F.; Niu, G. M.; Yang, Y. F.; Li, H.; Jiang, Y. Y. Tumor microenvironment-responsive fenton nanocatalysts for intensified anticancer treatment. J. Nanobiotechnol. 2022, 20, 69.
Wu, Y.; Guo, T.; Qiu, Y.; Lin, Y.; Yao, Y. Y.; Lian, W. B.; Lin, L. S.; Song, J. B.; Yang, H. H. An inorganic prodrug, tellurium nanowires with enhanced ROS generation and GSH depletion for selective cancer therapy. Chem. Sci. 2019, 10, 7068–7075.
Sharma, L. K.; Lu, J. X.; Bai, Y. D. Mitochondrial respiratory complex I: Structure, function and implication in human diseases. Curr. Med. Chem. 2009, 16, 1266–1277.
Vercellino, I.; Sazanov, L. A. The assembly, regulation and function of the mitochondrial respiratory chain. Nat. Rev. Mol. Cell Biol. 2022, 23, 141–161.
Zhao, R. Z.; Jiang, S.; Zhang, L.; Yu, Z. B. Mitochondrial electron transport chain, ROS generation and uncoupling (Review). Int. J. Mol. Med. 2019, 44, 3–15.
Murphy, M. P.; Hartley, R. C. Mitochondria as a therapeutic target for common pathologies. Nat. Rev. Drug Discovery 2018, 17, 865–886.
Weinberg, S. E.; Chandel, N. S. Targeting mitochondria metabolism for cancer therapy. Nat. Chem. Biol. 2015, 11, 9–15.
Navas, L. E.; Carnero, A. NAD+ metabolism, stemness, the immune response, and cancer. Signal Transduct. Target. Ther. 2021, 6, 2.
Ralto, K. M.; Rhee, E. P.; Parikh, S. M. NAD+ homeostasis in renal health and disease. Nat. Rev. Nephrol. 2020, 16, 99–111.
Hay, N. Reprogramming glucose metabolism in cancer: Can it be exploited for cancer therapy. Nat. Rev. Cancer 2016, 16, 635–649.
Ji, S. H.; Chen, Y. D.; Zhao, X. L.; Cai, Y. Y.; Zhang, X. P.; Sun, F. L.; Chen, Q.; Deng, Q. M.; Wang, C. H.; Ma, K. et al. Surface morphology and payload synergistically caused an enhancement of the longitudinal relaxivity of a Mn3O4/PtOx nanocomposite for magnetic resonance tumor imaging. Biomater. Sci. 2021, 9, 2732–2742.
Steinberg, I.; Huland, D. M.; Vermesh, O.; Frostig, H. E.; Tummers, W. S.; Gambhir, S. S. Photoacoustic clinical imaging. Photoacoustics 2019, 14, 77–98.
Mogol, A. N.; Kaminsky, A. Z.; Dutton, D. J.; Erdogan, Z. M. Targeting NAD+ metabolism: Preclinical insights into potential cancer therapy strategies. Endocrinology 2024, 165, bqae043.
Navas, L. E.; Carnero, A. Nicotinamide adenine dinucleotide (NAD) metabolism as a relevant target in cancer. Cells 2022, 11, 2627.
Kennedy, B. E.; Giacomantonio, M.; Murphy, J. P.; Cutler, S.; Sadek, M.; Konda, P.; Paulo, J. A.; Pathak, G. P.; Renkens, S. H. J.; Grieve, S. et al. NAD+ depletion enhances reovirus-induced oncolysis in multiple myeloma. Mol. Ther. Oncolytics 2022, 24, 695–706.
Shi, X. L.; Zhang, W.; Gu, C.; Ren, H. G.; Wang, C.; Yin, N. R.; Wang, Z. M.; Yu, J. H.; Liu, F. J.; Zhang, H. W. NAD+ depletion radiosensitizes 2-DG-treated glioma cells by abolishing metabolic adaptation. Free Radical Biol. Med. 2021, 162, 514–522.