AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Review Article

Selective oxidation of emerging organic contaminants in heterogeneous Fenton-like systems

Sheng WangYuxin LuShangkun PeiXiang Li( )Bo Wang( )
Key Laboratory of Cluster Science Ministry of Education, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Advanced Technologies Research Institute (Jinan), Advanced Research Institute of Multidisciplinary Science, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, China
Show Author Information

Graphical Abstract

The typical oxidation mechanism during the selective decomposition of emerging organic contaminants was systematically summarized including the selective generation of reactive oxygen species (ROS) in photo/electron-Fenton and Fenton-like systems etc. by various pathways.

Abstract

Heterogeneous Fenton-like reaction shows great potential for eliminating organic substances (e.g. emerging organic contaminants (EOCs)) in water, which has been widely explored in recent decades. However, the catalytic mechanisms reported in current studies are extremely complicated because multiple mechanisms coexist and contribute to the removal efficiencies. Most importantly, heterogeneous systems show selective oxidation properties, which are crucial for improving the efficiencies in the catalytic elimination of organic substances. Thus, this critical review summarizes and compares the diverse existing mechanisms (non-radical and radical pathways) in heterogeneous catalytic processes based on recent studies. The typical oxidation mechanisms during selective advanced oxidation of EOCs were systematically discussed based on the following sections, including the selective adsorption and generation of reactive oxygen species (ROS) in photo/electron-Fenton and Fenton-like systems. Moreover, the non-radical pathways are discussed in depth by the singlet oxygen, high-valent metal-oxo, electron transfer process, etc. Moreover, the direct oxidative transfer process for the removal of EOCs was introduced in recent studies. Finally, the cost, feasibility as well as the sustainability of heterogeneous Fenton-like catalysts are summarized. This review offers useful guidance for developing suitable strategies to develop materials for decomposing the organic substrates.

References

[1]

Bhat, S. A.; Singh, S.; Singh, J.; Kumar, S.; Bhawana; Vig, A. P. Bioremediation and detoxification of industrial wastes by earthworms: Vermicompost as powerful crop nutrient in sustainable agriculture. Bioresour. Technol. 2018, 252, 172–179.

[2]

Cotruvo, J. A. 2017 WHO guidelines for drinking water quality: First addendum to the fourth edition. J. AWWA 2017, 109, 44–51.

[3]

Rego, R. M.; Kuriya, G.; Kurkuri, M. D.; Kigga, M. MOF based engineered materials in water remediation: Recent trends. J. Hazard. Mater. 2021, 403, 123605.

[4]

Wang, B.; Yu, G. Emerging contaminant control: From science to action. Front. Environ. Sci. Eng. 2022, 16, 81.

[5]

Albero, B.; Pérez, R. A.; Sánchez-Brunete, C.; Tadeo, J. L. Occurrence and analysis of parabens in municipal sewage sludge from wastewater treatment plants in Madrid (Spain). J. Hazard. Mater. 2012, 239–240, 48–55.

[6]

Adeleye, A. S.; Xue, J.; Zhao, Y. X.; Taylor, A. A.; Zenobio, J. E.; Sun, Y. A.; Han, Z. W.; Salawu, O. A.; Zhu, Y. R. Abundance, fate, and effects of pharmaceuticals and personal care products in aquatic environments. J. Hazard. Mater. 2022, 424, 127284.

[7]

He, J.; Yang, X. F.; Men, B.; Wang, D. S. Interfacial mechanisms of heterogeneous Fenton reactions catalyzed by iron-based materials: A review. J. Environ. Sci. 2016, 39, 97–109.

[8]

Wang, J. L.; Wang, S. Z. Reactive species in advanced oxidation processes: Formation, identification and reaction mechanism. Chem. Eng. J. 2020, 401, 126158.

[9]

Duan, X. G.; Sun, H. Q.; Shao, Z. P.; Wang, S. B. Nonradical reactions in environmental remediation processes: Uncertainty and challenges. Appl. Catal. B: Environ. 2018, 224, 973–982.

[10]

Zhu, Y. P.; Zhu, R. L.; Xi, Y. F.; Zhu, J. X.; Zhu, G. Q.; He, H. P. Strategies for enhancing the heterogeneous Fenton catalytic reactivity: A review. Appl. Catal. B: Environ. 2019, 255, 117739.

[11]

Li, L.; Yin, Z.; Cheng, M.; Qin, L.; Liu, S. Y.; Yi, H.; Zhang, M. M.; Fu, Y. K.; Yang, X. F.; Zhou, X. R. et al. Insights into reactive species generation and organics selective degradation in Fe-based heterogeneous Fenton-like systems: A critical review. Chem. Eng. J. 2023, 454, 140126.

[12]

Chen, Q.; Lü, F.; Zhang, H.; He, P. J. Where should Fenton go for the degradation of refractory organic contaminants in wastewater. Water Res. 2023, 229, 119479.

[13]

Hu, Y.; Zhong, Z.; Lu, M. T.; Muhammad, Y.; Jalil Shah, S.; He, H.; Gong, W. X.; Ren, Y. F.; Yu, X.; Zhao, Z. X. et al. Biomimetic O2-carrying and highly in-situ H2O2 generation using Ti3C2 MXene/MIL-100(Fe) hybrid via Fe-Protoporphyrin bridging for photo-Fenton synergistic degradation of thiacloprid. Chem. Eng. J. 2022, 450, 137964.

[14]

Wang, X. H.; Xiong, Z. K.; Shi, H. L.; Wu, Z. L.; Huang, B. K.; Zhang, H.; Zhou, P.; Pan, Z. C.; Liu, W.; Lai, B. Switching the reaction mechanisms and pollutant degradation routes through active center size-dependent Fenton-like catalysis. Appl. Catal. B: Environ. 2023, 329, 122569.

[15]

Miao, J.; Song, J.; Lang, J. Y.; Zhu, Y.; Dai, J.; Wei, Y.; Long, M. C.; Shao, Z. P.; Zhou, B. X.; Alvarez, P. J. J. et al. Single-atom MnN5 catalytic sites enable efficient peroxymonosulfate activation by forming highly reactive Mn(IV)-oxo species. Environ. Sci. Technol. 2023, 57, 4266–4275.

[16]

Xu, S. Q.; Zhu, H. X.; Cao, W. R.; Wen, Z. B.; Wang, J. N.; François-Xavier, C. P.; Wintgens, T. Cu-Al2O3-g-C3N4 and Cu-Al2O3-C-dots with dual-reaction centres for simultaneous enhancement of Fenton-like catalytic activity and selective H2O2 conversion to hydroxyl radicals. Appl. Catal. B: Environ. 2018, 234, 223–233.

[17]

Liu, T. C.; Xiao, S. Z.; Li, N.; Chen, J. B.; Zhou, X. F.; Qian, Y. J.; Huang, C. H.; Zhang, Y. L. Water decontamination via nonradical process by nanoconfined Fenton-like catalysts. Nat. Commun. 2023, 14, 2881.

[18]

Wang, Y. M.; Zhang, P.; Lyu, L.; Li, T.; Hu, C. Preferential destruction of micropollutants in water through a self-purification process with dissolved organic carbon polar complexation. Environ. Sci. Technol. 2022, 56, 10849–10856.

[19]

Yang, Z. C.; Qian, J. S.; Shan, C.; Li, H. C.; Yin, Y. Y.; Pan, B. C. Toward selective oxidation of contaminants in aqueous systems. Environ. Sci. Technol. 2021, 55, 14494–14514.

[20]

Zong, Y.; Chen, L.; Zeng, Y. Q.; Xu, J.; Zhang, H.; Zhang, X. M.; Liu, W.; Wu, D. L. Do we appropriately detect and understand singlet oxygen possibly generated in advanced oxidation processes by electron paramagnetic resonance spectroscopy. Environ. Sci. Technol. 2023, 57, 9394–9404.

[21]

Ren, W.; Cheng, C.; Shao, P. H.; Luo, X. B.; Zhang, H.; Wang, S. B.; Duan, X. G. Origins of electron-transfer regime in persulfate-based nonradical oxidation processes. Environ. Sci. Technol. 2022, 56, 78–97.

[22]

Ren, W.; Xiong, L. L.; Yuan, X. H.; Yu, Z. W.; Zhang, H.; Duan, X. G.; Wang, S. B. Activation of peroxydisulfate on carbon nanotubes: Electron-transfer mechanism. Environ. Sci. Technol. 2019, 53, 14595–14603.

[23]

Liang, J.; Duan, X. G.; Xu, X. Y.; Chen, K. X.; Zhang, Y.; Zhao, L.; Qiu, H.; Wang, S. B.; Cao, X. D. Persulfate oxidation of sulfamethoxazole by magnetic iron-char composites via nonradical pathways: Fe(IV) versus surface-mediated electron transfer. Environ. Sci. Technol. 2021, 55, 10077–10086.

[24]

Wang, Z.; Qiu, W.; Pang, S. Y.; Guo, Q.; Guan, C. T.; Jiang, J. Aqueous iron(IV)-oxo complex: An emerging powerful reactive oxidant formed by iron(II)-based advanced oxidation processes for oxidative water treatment. Environ. Sci. Technol. 2022, 56, 1492–1509.

[25]

Wang, F. X.; Zhang, Z. C.; Wang, C. C. Selective oxidation of aqueous organic pollutants over MOFs-based catalysts: A mini review. Chem. Eng. J. 2023, 459, 141538.

[26]

Xie, Z. H.; He, C. S.; Pei, D. N.; Dong, Y. D.; Yang, S. R.; Xiong, Z. K.; Zhou, P.; Pan, Z. C.; Yao, G.; Lai, B. Review of characteristics, generation pathways and detection methods of singlet oxygen generated in advanced oxidation processes (AOPs). Chem. Eng. J. 2023, 468, 143778.

[27]

Yu, J. F.; Tang, L.; Pang, Y.; Liang, X. M.; Lu, Y.; Feng, H. P.; Wang, J. J.; Deng, L. F.; Zou, J. J.; Zhu, X. et al. Non-radical oxidation in environmental catalysis: Recognition, identification, and perspectives. Chem. Eng. J. 2022, 433, 134385.

[28]

Yang, B. W.; Liu, H. T.; Zhang, J. High-valent metals in advanced oxidation processes: A critical review of their identification methods, formation mechanisms, and reactivity performance. Chem. Eng. J. 2023, 460, 141796.

[29]

Sun, Y. Y.; Cai, P. C.; Yang, D. J.; Yao, X. D. Single-site catalysis in heterogeneous electro-Fenton reaction for wastewater remediation. Chem Catal. 2022, 2, 679–692.

[30]

Kondo, Y.; Kuwahara, Y.; Mori, K.; Yamashita, H. Design of metal-organic framework catalysts for photocatalytic hydrogen peroxide production. Chem 2022, 8, 2924–2938.

[31]

Yang, Y.; Zhang, X. R.; Jiang, J. Y.; Han, J. R.; Li, W. X.; Li, X. Y.; Yee Leung, K. M.; Snyder, S. A.; Alvarez, P. J. J. Which micropollutants in water environments deserve more attention globally. Environ. Sci. Technol. 2022, 56, 13–29.

[32]

Zhang, P.; Sun, M. L.; Zhou, C. Y.; He, C. S.; Liu, Y.; Zhang, H.; Xiong, Z. K.; Liu, W.; Zhou, P.; Lai, B. Origins of selective oxidation in carbon-based nonradical oxidation processes toward organic pollutants: Quantitative structure-activity relationships (QSARs). Environ. Sci. Technol. 2024, 58, 4781–4791.

[33]

Liu, X. R.; Qin, H. H.; Xing, S. Y.; Liu, Y.; Chu, C. C.; Yang, D. H.; Duan, X. G.; Mao, S. Selective removal of organic pollutants in groundwater and surface water by persulfate-assisted advanced oxidation: The role of electron-donating capacity. Environ. Sci. Technol. 2023, 57, 13710–13720.

[34]

Xie, Z. H.; He, C. S.; Zhou, H. Y.; Li, L. L.; Liu, Y.; Du, Y.; Liu, W.; Mu, Y.; Lai, B. Effects of molecular structure on organic contaminants’ degradation efficiency and dominant ROS in the advanced oxidation process with multiple ROS. Environ. Sci. Technol. 2022, 56, 8784–8795.

[35]

Peng, Y. H.; Zhang, Q. M.; Ren, W.; Duan, X. G.; Ding, L.; Jing, Y. P.; Shao, P. H.; Xiao, X.; Luo, X. B. Thermodynamic and kinetic behaviors of persulfate-based electron-transfer regime in carbocatalysis. Environ. Sci. Technol. 2023, 57, 19012–19022.

[36]

Yin, K. X.; Shang, Y. N.; Chen, D. D.; Gao, B. Y.; Yue, Q. Y.; Xu, X. Redox potentials of pollutants determining the dominate oxidation pathways in manganese single-atom catalyst (Mn-SAC)/peroxymonosulfate system: Selective catalytic mechanisms for versatile pollutants. Appl. Catal. B: Environ. 2023, 338, 123029.

[37]

Wu, X. H.; Kim, J. H. Outlook on single atom catalysts for persulfate-based advanced oxidation. ACS EST Eng. 2022, 2, 1776–1796.

[38]

Bai, S.; Zhang, N.; Gao, C.; Xiong, Y. J. Defect engineering in photocatalytic materials. Nano Energy 2018, 53, 296–336.

[39]

Huang, R. F.; Zhu, Y. M.; Curnan, M. T.; Zhang, Y. Q.; Han, J. W.; Chen, Y.; Huang, S. B.; Lin, Z. Tuning reaction pathways of peroxymonosulfate-based advanced oxidation process via defect engineering. Cell Rep. Phys. Sci. 2021, 2, 100550.

[40]

Kim, M.; Park, J.; Kim, S. H.; Lee, J. H.; Jeong, K.; Kim, J. Metal-organic framework-derived ZrO2 on N/S-doped porous carbons for mechanistic and kinetic inspection of catalytic H2O2 homolysis. Carbon 2023, 203, 630–649.

[41]

Bao, C. S.; Wang, H.; Wang, C. Y.; Zhang, X. H.; Zhao, X. L.; Dong, C. L.; Huang, Y. C.; Chen, S.; Guo, P.; She, X. L. et al. Cooperation of oxygen vacancy and FeIII/FeII sites in H2-reduced Fe-MIL-101 for enhanced Fenton-like degradation of organic pollutants. J. Hazard. Mater. 2023, 441, 129922.

[42]

Zhang, T.; Wu, S.; Li, N.; Chen, G. Y.; Hou, L. Applications of vacancy defect engineering in persulfate activation: Performance and internal mechanism. J. Hazard. Mater. 2023, 449, 130971.

[43]

Xie, J. L.; Zhang, L. R.; Luo, X.; Huang, L.; Gong, X. B.; Tian, J. Sulfur anchored on N-doped porous carbon as metal-free peroxymonosulfate activator for tetracycline hydrochloride degradation: Nonradical pathway mechanism, performance and biotoxicity. Chem. Eng. J. 2023, 457, 141149.

[44]

Yang, Y. Y.; Ren, W.; Hu, K. S.; Zhang, P. P.; Wang, Y. X.; Duan, X. G.; Sun, H. Q.; Wang, S. B. Challenges in radical/nonradical-based advanced oxidation processes for carbon recycling. Chem Catal. 2022, 2, 1858–1869.

[45]

Huang, B. K.; Wu, Z. L.; Zhou, H. Y.; Li, J. Y.; Zhou, C. Y.; Xiong, Z. K.; Pan, Z. C.; Yao, G.; Lai, B. Recent advances in single-atom catalysts for advanced oxidation processes in water purification. J. Hazard. Mater. 2021, 412, 125253.

[46]

Zeng, Y. X.; Almatrafi, E.; Xia, W.; Song, B.; Xiong, W. P.; Cheng, M.; Wang, Z. W.; Liang, Y. T.; Zeng, G. M.; Zhou, C. Y. Nitrogen-doped carbon-based single-atom Fe catalysts: Synthesis, properties, and applications in advanced oxidation processes. Coord. Chem. Rev. 2023, 475, 214874.

[47]

Xia, P.; Wang, C. H.; He, Q.; Ye, Z. H.; Sirés, I. MOF-derived single-atom catalysts: The next frontier in advanced oxidation for water treatment. Chem. Eng. J. 2023, 452, 139446.

[48]

Wei, Y. S.; Zhang, M.; Zou, R. Q.; Xu, Q. Metal-organic framework-based catalysts with single metal sites. Chem. Rev. 2020, 120, 12089–12174.

[49]

Qu, W.; Chen, C.; Tang, Z. Y.; Wen, H. L.; Hu, L. L.; Xia, D. H.; Tian, S. H.; Zhao, H. N.; He, C.; Shu, D. Progress in metal-organic-framework-based single-atom catalysts for environmental remediation. Coord. Chem. Rev. 2023, 474, 214855.

[50]

Li, X.; Wang, B. Atomic regulations of single atom from metal-organic framework derived carbon for advanced water treatment. Nano Res. 2023, 16, 10326–10341.

[51]

Ren, Y.; Yin, Y.; Zhang, J. Y.; Lv, L.; Zhang, W. M. Trade-off between Fenton-like activity and structural stability of MILs(Fe). Chem. Eng. J. 2021, 420, 129583.

[52]

Chávez, A. M.; Rey, A.; López, J.; Álvarez, P. M.; Beltrán, F. J. Critical aspects of the stability and catalytic activity of MIL-100(Fe) in different advanced oxidation processes. Sep. Purif. Technol. 2021, 255, 117660.

[53]

Wacławek, S.; Lutze, H. V.; Grübel, K.; Padil, V. V. T.; Černík, M.; Dionysiou, D. D. Chemistry of persulfates in water and wastewater treatment: A review. Chem. Eng. J. 2017, 330, 44–62.

[54]

Wang, F.; Gao, Y.; Liu, S. S.; Yi, X. H.; Wang, C. C.; Fu, H. F. Fabrication strategies of metal-organic frameworks derivatives for catalytic aqueous pollutants elimination. Chem. Eng. J. 2023, 463, 142466.

[55]

Song, M.; Liu, W.; Zhang, J. J.; Zhang, C.; Huang, X.; Wang, D. L. Single-atom catalysts for H2O2 electrosynthesis via two-electron oxygen reduction reaction. Adv. Funct. Mater. 2023, 33, 2212087.

[56]

Wang, N.; Ma, S. B.; Zuo, P. J.; Duan, J. Z.; Hou, B. R. Recent progress of electrochemical production of hydrogen peroxide by two-electron oxygen reduction reaction. Adv. Sci. 2021, 8, 2100076.

[57]

Xia, G. S.; Tian, Y. D.; Yin, X. M.; Yuan, W. H.; Wu, X. C.; Yang, Z. X.; Yu, G.; Wang, Y. J.; Wu, M. B. Maximizing electrochemical hydrogen peroxide production from oxygen reduction with superaerophilic electrodes. Appl. Catal. B: Environ. 2021, 299, 120655.

[58]

von Gunten, U. Oxidation processes in water treatment: Are we on track. Environ. Sci. Technol. 2018, 52, 5062–5075.

[59]

Li, Y.; Chen, J. X.; Ji, Y. X.; Zhao, Z. L.; Cui, W. J.; Sang, X. H.; Cheng, Y.; Yang, B.; Li, Z. J.; Zhang, Q. H. et al. Single-atom iron catalyst with biomimetic active center to accelerate proton spillover for medical-level electrosynthesis of H2O2 disinfectant. Angew. Chem., Int. Ed. 2023, 62, e202306491.

[60]

Lee, J.; von Gunten, U.; Kim, J. H. Persulfate-based advanced oxidation: Critical assessment of opportunities and roadblocks. Environ. Sci. Technol. 2020, 54, 3064–3081.

[61]

Wang, J. W.; Xiong, B.; Miao, L.; Wang, S. L.; Xie, P. C.; Wang, Z. P.; Ma, J. Applying a novel advanced oxidation process of activated peracetic acid by CoFe2O4 to efficiently degrade sulfamethoxazole. Appl. Catal. B: Environ. 2021, 280, 119422.

[62]

Liu, B. H.; Guo, W. Q.; Jia, W. R.; Wang, H. Z.; Si, Q. S.; Zhao, Q.; Luo, H. C.; Jiang, J.; Ren, N. Q. Novel nonradical oxidation of sulfonamide antibiotics with Co(II)-doped g-C3N4-activated peracetic acid: Role of high-valent cobalt-oxo species. Environ. Sci. Technol. 2021, 55, 12640–12651.

[63]

Xu, L.; Tschirner, U. Peracetic acid pretreatment of alfalfa stem and aspen biomass. BioResources 2011, 7, 203–216.

[64]

Liu, X. R.; Liu, Y.; Qin, H. H.; Ye, Z. W.; Wei, X. J.; Miao, W.; Yang, D. H.; Mao, S. Selective removal of phenolic compounds by peroxydisulfate activation: Inherent role of hydrophobicity and interface ROS. Environ. Sci. Technol. 2022, 56, 2665–2676.

[65]

Vinothkumar, K.; Shivanna Jyothi, M.; Lavanya, C.; Sakar, M.; Valiyaveettil, S.; Balakrishna, R. G. Strongly co-ordinated MOF-PSF matrix for selective adsorption, separation and photodegradation of dyes. Chem. Eng. J. 2022, 428, 132561.

[66]

Araya, T.; Jia, M. K.; Yang, J.; Zhao, P.; Cai, K.; Ma, W. H.; Huang, Y. P. Resin modified MIL-53 (Fe) MOF for improvement of photocatalytic performance. Appl. Catal. B: Environ. 2017, 203, 768–777.

[67]

Wang, Y. S.; Li, N.; Fu, Q. L.; Cheng, Z. J.; Song, Y. J.; Yan, B. B.; Chen, G. Y.; Hou, L. A.; Wang, S. B. Conversion and impact of dissolved organic matters in a heterogeneous catalytic peroxymonosulfate system for pollutant degradation. Water Res. 2023, 241, 120166.

[68]

Zhang, B. T.; Yan, Z. H.; Zhao, J. J.; Chen, Z.; Liu, Y. C.; Fan, M. H.; Du, W. Peroxymonocarbonate activation via Co nanoparticles confined in metal-organic frameworks for efficient antibiotic degradation in different actual water matrices. Water Res. 2023, 243, 120340.

[69]

Li, X. T.; Yang, B.; Xiao, K.; Duan, H. B.; Wan, J. Q.; Zhao, H. Z. Targeted degradation of refractory organic compounds in wastewaters based on molecular imprinting catalysts. Water Res. 2021, 203, 117541.

[70]

Tang, M.; Wan, J. Q.; Wang, Y.; Yan, Z. C.; Ma, Y. W.; Sun, J.; Ding, S. Developing a molecularly imprinted channels catalyst based on template effect for targeted removal of organic micropollutants from wastewaters. Chem. Eng. J. 2022, 445, 136755.

[71]

Zhao, Y.; Zhang, R. C.; Huang, J. M.; Zhang, Y.; Han, B.; Ying, Y. P.; Chen, M.; Xie, S. Y.; Chen, D. M. Imprinting defective Fe-based metal-organic frameworks as an excellent platform for selective Fenton/persulfate degradation of LEX: Removal performance and mechanism. Appl. Catal. B: Environ. 2023, 337, 122919.

[72]

Ding, S.; Wan, J. Q.; Ma, Y. W.; Wang, Y.; Li, X. T.; Sun, J.; Pu, M. J. Targeted degradation of dimethyl phthalate by activating persulfate using molecularly imprinted Fe-MOF-74. Chemosphere 2021, 270, 128620.

[73]

Song, Q.; Li, Y. H.; Xie, W. C.; Gao, C. F.; Liu, L. F.; Liu, B. C. Catalytic degradation of carbamazepine by metal organic frameworks (MOFs) derived magnetic catalyst Fe@PC in an electro-Fenton coupled membrane filtration system: Performance, pathway, and mechanism. Sep. Purif. Technol. 2023, 309, 122988.

[74]

Zhang, M.; Xiao, C. M.; Yan, X.; Chen, S. S.; Wang, C. H.; Luo, R.; Qi, J. W.; Sun, X. Y.; Wang, L. J.; Li, J. S. Efficient removal of organic pollutants by metal-organic framework derived Co/C yolk-shell nanoreactors: Size-exclusion and confinement effect. Environ. Sci. Technol. 2020, 54, 10289–10300.

[75]

Li, X.; Chen, X. G.; Lv, Z. Y.; Wang, B. Ultrahigh ciprofloxacin accumulation and visible-light photocatalytic degradation: Contribution of metal organic frameworks carrier in magnetic surface molecularly imprinted polymers. J. Colloid Interface Sci. 2022, 616, 872–885.

[76]

Ding, S.; Wan, J. Q.; Wang, Y.; Yan, Z. C.; Ma, Y. W. Activation of persulfate by molecularly imprinted Fe-MOF-74@SiO2 for the targeted degradation of dimethyl phthalate: Effects of operating parameters and chlorine. Chem. Eng. J. 2021, 422, 130406.

[77]

Wu, S.; Quan, X. Design principles and strategies of photocatalytic H2O2 production from O2 Reduction. ACS EST Eng. 2022, 2, 1068–1079.

[78]

Wu, Y.; Che, H. N.; Liu, B.; Ao, Y. H. Promising materials for photocatalysis-self-Fenton system: Properties, modifications, and applications. Small Struct. 2023, 4, 2200371.

[79]

Zhao, S.; Zhao, X. Insights into the role of singlet oxygen in the photocatalytic hydrogen peroxide production over polyoxometalates-derived metal oxides incorporated into graphitic carbon nitride framework. Appl. Catal. B: Environ. 2019, 250, 408–418.

[80]

Liu, Y.; Zhao, Y.; Wang, J. L. Fenton/Fenton-like processes with in-situ production of hydrogen peroxide/hydroxyl radical for degradation of emerging contaminants: Advances and prospects. J. Hazard. Mater. 2021, 404, 124191.

[81]

Luo, J.; Liu, Y. N.; Fan, C. Z.; Tang, L.; Yang, S. J.; Liu, M. L.; Wang, M. E.; Feng, C. Y.; Ouyang, X. L.; Wang, L. L. et al. Direct attack and indirect transfer mechanisms dominated by reactive oxygen species for photocatalytic H2O2 production on g-C3N4 possessing nitrogen vacancies. ACS Catal. 2021, 11, 11440–11450.

[82]

Yu, W. Y.; Hu, C.; Bai, L. Q.; Tian, N.; Zhang, Y. H.; Huang, H. W. Photocatalytic hydrogen peroxide evolution: What is the most effective strategy. Nano Energy 2022, 104, 107906.

[83]

Zhang, X. D.; Wang, J.; Xiao, B. B.; Pu, Y. J.; Yang, Y. C.; Geng, J. S.; Wang, D. Y.; Chen, X. J.; Wei, Y. X.; Xiong, K. et al. Resin-based photo-self-Fenton system with intensive mineralization by the synergistic effect of holes and hydroxyl radicals. Appl. Catal. B: Environ. 2022, 315, 121525.

[84]

Xie, Y. H.; Liu, C. R.; Li, D. J.; Liu, Y. In situ-generated H2O2 with NCQDs/MIL-101(Fe) by activating O2: A dual effect of photocatalysis and photo-Fenton for efficient removal of tetracyline at natural pH. Appl. Surf. Sci. 2022, 592, 153312.

[85]

Ju, Y. J.; Li, H.; Wang, Z.; Liu, H. W.; Huo, S. H.; Jiang, S.; Duan, S. C.; Yao, Y. G.; Lu, X. Q.; Chen, F. J. Solar-driven on-site H2O2 generation and tandem photo-Fenton reaction on a triphase interface for rapid organic pollutant degradation. Chem. Eng. J. 2022, 430, 133168.

[86]

Wang, S. H.; Li, T.; Cheng, X.; Zhu, R. L.; Xu, Y. Regulating the concentration of dissolved oxygen to achieve the directional transformation of reactive oxygen species: A controllable oxidation process for ciprofloxacin degradation by calcined CuCoFe-LDH. Water Res. 2023, 233, 119744.

[87]

Quispe Cardenas, L. E.; Deptula, P. J.; Huerta, C. S.; Zhu, C. L.; Ye, Y. Y.; Wang, S. W.; Yang, Y. Electro-Fenton and induced electro-Fenton as versatile wastewater treatment processes for decontamination and nutrient removal without byproduct formation. ACS EST Eng. 2023, 3, 1547–1556.

[88]

Jung, E.; Shin, H.; Lee, B. H.; Efremov, V.; Lee, S.; Lee, H. S.; Kim, J.; Hooch Antink, W.; Park, S.; Lee, K. S. et al. Atomic-level tuning of Co-N-C catalyst for high-performance electrochemical H2O2 production. Nat. Mater. 2020, 19, 436–442.

[89]

Li, N.; Huang, C. C.; Wang, X.; Feng, Y. J.; An, J. K. Electrosynthesis of hydrogen peroxide via two-electron oxygen reduction reaction: A critical review focus on hydrophilicity/hydrophobicity of carbonaceous electrode. Chem. Eng. J. 2022, 450, 138246.

[90]

Liu, J. J.; Gong, Z. C.; Yan, M. M.; He, G. C.; Gong, H. S.; Ye, G. L.; Fei, H. L. Electronic structure regulation of single-atom catalysts for electrochemical oxygen reduction to H2O2. Small 2022, 18, 2103824.

[91]

Sun, K.; Xu, W. W.; Lin, X.; Tian, S. B.; Lin, W. F.; Zhou, D. J.; Sun, X. M. Electrochemical oxygen reduction to hydrogen peroxide via a two-electron transfer pathway on carbon-based single-atom catalysts. Adv. Mater. Interfaces 2021, 8, 2001360.

[92]

Chen, K. Y.; Huang, Y. X.; Jin, R. C.; Huang, B. C. Single atom catalysts for use in the selective production of hydrogen peroxide via two-electron oxygen reduction reaction: Mechanism, activity, and structure optimization. Appl. Catal. B: Environ. 2023, 337, 122987.

[93]

Peng, Y. Y.; Bian, Z. Y.; Zhang, W. H.; Wang, H. Identifying the key N species for electrocatalytic oxygen reduction reaction on N-doped graphene. Nano Res. 2023, 16, 6642–6651.

[94]

Sun, Y. Y.; Sinev, I.; Ju, W.; Bergmann, A.; Dresp, S.; Kühl, S.; Spöri, C.; Schmies, H.; Wang, H.; Bernsmeier, D. et al. Efficient electrochemical hydrogen peroxide production from molecular oxygen on nitrogen-doped mesoporous carbon catalysts. ACS Catal. 2018, 8, 2844–2856.

[95]

Cao, P. K.; Quan, X.; Zhao, K.; Zhao, X. Y.; Chen, S.; Yu, H. T. Durable and selective electrochemical H2O2 synthesis under a large current enabled by the cathode with highly hydrophobic three-phase architecture. ACS Catal. 2021, 11, 13797–13808.

[96]

Cao, W. R.; Hu, C.; Lyu, L. Efficient decomposition of organic pollutants over nZVI/FeO x /FeN y -anchored NC layers via a novel dual-reaction-centers-based wet air oxidation process under natural conditions. ACS EST Eng. 2021, 1, 1333–1341.

[97]

Deng, K. L.; Gu, Y. T.; Gao, T. T.; Liao, Z. Y.; Feng, Y. X.; Zhou, S.; Fang, Q.; Hu, C.; Lyu, L. Carbonized MOF-coated zero-valent Cu driving an efficient dual-reaction-center Fenton-like water treatment process through utilizing pollutants and natural dissolved oxygen. ACS EST Water 2022, 2, 174–183.

[98]

Lyu, L.; Cao, W. R.; Yu, G. F.; Yan, D. B.; Deng, K. L.; Lu, C.; Hu, C. Enhanced polarization of electron-poor/rich micro-centers over nZVCu-Cu(II)-rGO for pollutant removal with H2O2. J. Hazard. Mater. 2020, 383, 121182.

[99]

Lyu, L.; Yan, D. B.; Yu, G. F.; Cao, W. R.; Hu, C. Efficient destruction of pollutants in water by a dual-reaction-center Fenton-like process over carbon nitride compounds-complexed Cu(II)-CuAlO2. Environ. Sci. Technol. 2018, 52, 4294–4304.

[100]

Lyu, L.; Zhang, L. L.; He, G. Z.; He, H.; Hu, C. Selective H2O2 conversion to hydroxyl radicals in the electron-rich area of hydroxylated C-g-C3N4/CuCo-Al2O3. J. Mater. Chem. A 2017, 5, 7153–7164.

[101]

Liang, H.; Liu, R. P.; Hu, C. Z.; An, X. Q.; Zhang, X. W.; Liu, H. J.; Qu, J. H. Synergistic effect of dual sites on bimetal-organic frameworks for highly efficient peroxide activation. J. Hazard. Mater. 2021, 406, 124692.

[102]

Huang, P. P.; Chang, Q.; Jiang, G. D.; Xiao, K. R.; Wang, X. MIL-101(FeII3, Mn) with dual-reaction center as Fenton-like catalyst for highly efficient peroxide activation and phenol degradation. Sep. Purif. Technol. 2023, 306, 122582.

[103]

Zhang, H. X.; Li, C. W.; Lyu, L.; Hu, C. Surface oxygen vacancy inducing peroxymonosulfate activation through electron donation of pollutants over cobalt-zinc ferrite for water purification. Appl. Catal. B: Environ. 2020, 270, 118874.

[104]

Wang, D. K.; Suo, M. J.; Lai, S. Q.; Deng, L. Q.; Liu, J. Y.; Yang, J.; Chen, S. Q.; Wu, M. F.; Zou, J. P. Photoinduced acceleration of Fe3+/Fe2+ cycle in heterogeneous FeNi-MOFs to boost peroxodisulfate activation for organic pollutant degradation. Appl. Catal. B: Environ. 2023, 321, 122054.

[105]

Chen, Y. L.; Bai, X.; Ji, Y. T.; Chen, D. D. Enhanced activation of peroxymonosulfate using ternary MOFs-derived MnCoFeO for sulfamethoxazole degradation: Role of oxygen vacancies. J. Hazard. Mater. 2023, 441, 129912.

[106]

Yao, J. J.; Chen, Z. H.; Zhang, H. Y.; Gao, N. Y.; Zhang, Z.; Jiang, W. C. New insight into the regulation mechanism of visible light in naproxen degradation via activation of peroxymonosulfate by MOF derived BiFeO3. J. Hazard. Mater. 2022, 431, 128513.

[107]

Zan, J.; Song, H.; Zuo, S. Y.; Chen, X. R.; Xia, D. S.; Li, D. Y. MIL-53(Fe)-derived Fe2O3 with oxygen vacancy as Fenton-like photocatalysts for the elimination of toxic organics in wastewater. J. Clean. Prod. 2020, 246, 118971.

[108]

Xu, W. K.; Xue, W. J.; Huang, H. L.; Wang, J. S.; Zhong, C. L.; Mei, D. H. Morphology controlled synthesis of α-Fe2O3– x with benzimidazole-modified Fe-MOFs for enhanced photo-Fenton-like catalysis. Appl. Catal. B: Environ. 2021, 291, 120129.

[109]

Xie, L. X.; Zhang, T. S.; Wang, X. Y.; Zhu, W. X.; Liu, Z. L.; Liu, M. S.; Wang, J.; Zhang, L.; Du, T.; Yang, C. Y. et al. Facile construction of Fe3+/Fe2+ mediated charge transfer pathway in MIL-101 for effective tetracycline degradation. J. Clean. Prod. 2022, 359, 131808.

[110]

Zhou, X. Q.; Jawad, A.; Luo, M. Y.; Luo, C. G.; Zhang, T. T.; Wang, H. B.; Wang, J.; Wang, S. L.; Chen, Z. L.; Chen, Z. Q. Regulating activation pathway of Cu/persulfate through the incorporation of unreducible metal oxides: Pivotal role of surface oxygen vacancies. Appl. Catal. B: Environ. 2021, 286, 119914.

[111]

Chen, X. X.; Fu, W. Y.; Yang, Z. C.; Yang, Y. L.; Li, Y. J.; Huang, H.; Zhang, X. H.; Pan, B. C. Enhanced H2O2 utilization efficiency in Fenton-like system for degradation of emerging contaminants: Oxygen vacancy-mediated activation of O2. Water Res. 2023, 230, 119562.

[112]

Qu, W.; Wen, H. L.; Qu, X. R.; Guo, Y. F.; Hu, L. L.; Liu, W.; Tian, S. H.; He, C.; Shu, D. Enhanced Fenton-like catalysis for pollutants removal via MOF-derived Co x Fe3– x O4 membrane: Oxygen vacancy-mediated mechanism. Chemosphere 2022, 303, 135301.

[113]

Chen, H. Y.; Chen, R. Z.; Yang, S. J.; Ding, D. H.; Li, X. P.; Long, X. X.; Zhao, T.; Du, Y. X.; Liu, M.; Tan, J. H. et al. Sustainable heterolytic cleavage of peroxymonosulfate by promoting Fe(III)/Fe(II) cycle: The role of in-situ sulfur. Chem. Eng. J. 2022, 446, 137257.

[114]

Zhao, C.; Meng, L. H.; Chu, H. Y.; Wang, J. F.; Wang, T. Y.; Ma, Y. H.; Wang, C. C. Ultrafast degradation of emerging organic pollutants via activation of peroxymonosulfate over Fe3C/Fe@N-C- x: Singlet oxygen evolution and electron-transfer mechanisms. Appl. Catal. B: Environ. 2023, 321, 122034.

[115]

Xing, Y. C.; Yao, Z.; Li, W. Y.; Wu, W. T.; Lu, X. Q.; Tian, J.; Li, Z. T.; Hu, H.; Wu, M. B. Fe/Fe3C boosts H2O2 utilization for methane conversion overwhelming O2 generation. Angew. Chem., Int. Ed. 2021, 60, 8889–8895.

[116]

Zhan, H. Y.; Zhou, R. R.; Wang, P. F.; Zhou, Q. X. Selective hydroxyl generation for efficient pollutant degradation by electronic structure modulation at Fe sites. Proc. Natl. Acad. Sci. USA 2023, 120, e2305378120.

[117]

Zhang, B. F.; Li, X. Q.; Akiyama, K.; Bingham, P. A.; Kubuki, S. Elucidating the mechanistic origin of a spin state-dependent FeN x -C catalyst toward organic contaminant oxidation via peroxymonosulfate activation. Environ. Sci. Technol. 2022, 56, 1321–1330.

[118]

Wang, Z. W.; Wang, W. L.; Wang, J.; Yuan, Y.; Wu, Q. Y.; Hu, H. Y. High-valent iron-oxo species mediated cyclic oxidation through single-atom ≡Fe-N6 sites with high peroxymonosulfate utilization rate. Appl. Catal. B: Environ. 2022, 305, 121049.

[119]

Wei, Y.; Miao, J.; Ge, J. X.; Lang, J. Y.; Yu, C. Y.; Zhang, L. Z.; Alvarez, P. J. J.; Long, M. C. Ultrahigh peroxymonosulfate utilization efficiency over CuO nanosheets via heterogeneous Cu(III) formation and preferential electron transfer during degradation of phenols. Environ. Sci. Technol. 2022, 56, 8984–8992.

[120]

Wang, C. Y.; Wang, X. X.; Wang, H.; Zhang, L. J.; Wang, Y. H.; Dong, C. L.; Huang, Y. C.; Guo, P.; Cai, R. S.; Haigh, S. J. et al. Low-coordinated Co-N3 sites induce peroxymonosulfate activation for norfloxacin degradation via high-valent cobalt-oxo species and electron transfer. J. Hazard. Mater. 2023, 455, 131622.

[121]

Crandell, D. W.; Ghosh, S.; Berlinguette, C. P.; Baik, M. H. How a [CoCo=O]2+ fragment oxidizes water: Involvement of a biradicaloid [CoII-( O)]2+ species in forming the O–O bond. ChemSusChem 2015, 8, 844–852.

[122]

Zou, Y. X.; Li, J.; Tan, J.; Lyu, L.; Li, S. Y.; Wang, Y. H.; Lu, Y.; Zhu, X. B.; Zhang, T. T. High-valent cobalt-oxo species triggers singlet oxygen for rapid contaminants degradation along with mild peroxymonosulfate decomposition in single Co atom-doped g-C3N4. Chem. Eng. J. 2023, 471, 144531.

[123]

Ren, W.; Xiong, L. L.; Nie, G.; Zhang, H.; Duan, X. G.; Wang, S. B. Insights into the electron-transfer regime of peroxydisulfate activation on carbon nanotubes: The role of oxygen functional groups. Environ. Sci. Technol. 2020, 54, 1267–1275.

[124]

Ren, W.; Nie, G.; Zhou, P.; Zhang, H.; Duan, X. G.; Wang, S. B. The intrinsic nature of persulfate activation and N-doping in carbocatalysis. Environ. Sci. Technol. 2020, 54, 6438–6447.

[125]

Jiang, N.; Xu, H. D.; Wang, L. H.; Jiang, J.; Zhang, T. Nonradical oxidation of pollutants with single-atom-Fe(III)-activated persulfate: Fe(V) being the possible intermediate oxidant. Environ. Sci. Technol. 2020, 54, 14057–14065.

[126]

Xu, X. M.; Zhang, Y. M.; Chen, Y.; Liu, C. H.; Wang, W. J.; Wang, J. J.; Huang, H. T.; Feng, J. Y.; Li, Z. S.; Zou, Z. G. Revealing *OOH key intermediates and regulating H2O2 photoactivation by surface relaxation of Fenton-like catalysts. Proc. Natl. Acad. Sci. USA 2022, 119, e2205562119.

[127]

Cheng, S. S.; Zhao, Y. J.; Pan, Y. H.; Yu, J. P.; Lei, Y.; Lei, X.; Ouyang, G. F.; Yang, X. Role of antioxidant moieties in the quenching of a purine radical by dissolved organic matter. Environ. Sci. Technol. 2022, 56, 546–555.

[128]

Li, K.; Ma, S. L.; Zou, C. N. R.; Latif, J.; Jiang, Y. R.; Ni, Z.; Shen, S. Q.; Feng, J. P.; Jia, H. Z. Unrecognized role of organic acid in natural attenuation of pollutants by mackinawite (FeS): The significance of carbon-center free radicals. Environ. Sci. Technol. 2023, 57, 20871–20880.

[129]

Chen, L.; Wang, S.; Yang, Z. C.; Qian, J. S.; Pan, B. C. Selective interfacial oxidation of organic pollutants in Fenton-like system mediated by Fe(III)-adsorbed carbon nanotubes. Appl. Catal. B: Environ. 2021, 292, 120193.

[130]

Li, M. M.; Wang, P. F.; Zhang, K. D.; Zhang, H. X.; Bao, Y. P.; Li, Y.; Zhan, S. H.; Crittenden, J. C. Single cobalt atoms anchored on Ti3C2T x with dual reaction sites for efficient adsorption-degradation of antibiotic resistance genes. Proc. Natl. Acad. Sci. USA 2023, 120, e2305705120.

[131]

Guo, Y.; Zhan, J. H.; Yu, G.; Wang, Y. J. Evaluation of the concentration and contribution of superoxide radical for micropollutant abatement during ozonation. Water Res. 2021, 194, 116927.

[132]

Guo, Y.; Zhang, Y. X.; Yu, G.; Wang, Y. J. Revisiting the role of reactive oxygen species for pollutant abatement during catalytic ozonation: The probe approach versus the scavenger approach. Appl. Catal. B: Environ. 2021, 280, 119418.

[133]

Guo, Y.; Long, J. F.; Huang, J.; Yu, G.; Wang, Y. J. Can the commonly used quenching method really evaluate the role of reactive oxygen species in pollutant abatement during catalytic ozonation. Water Res. 2022, 215, 118275.

[134]

Zhang, Y. J.; Huang, G. X.; Winter, L. R.; Chen, J. J.; Tian, L. L.; Mei, S. C.; Zhang, Z.; Chen, F.; Guo, Z. Y.; Ji, R. et al. Simultaneous nanocatalytic surface activation of pollutants and oxidants for highly efficient water decontamination. Nat. Commun. 2022, 13, 3005.

[135]

Zhang, L.; Sun, Y.; Ge, R. L.; Zhou, W. H.; Ao, Z. M.; Wang, J. H. Mechanical insight into direct singlet oxygen generation pathway: Pivotal role of FeN4 sites and selective organic contaminants removal. Appl. Catal. B: Environ. 2023, 339, 123130.

[136]

Wang, H. J.; Gao, L. W.; Xie, Y. X.; Yu, G.; Wang, Y. J. Clarification of the role of singlet oxygen for pollutant abatement during persulfate-based advanced oxidation processes: Co3O4@CNTs activated peroxymonosulfate as an example. Water Res. 2023, 244, 120480.

[137]

Yan, Y. Q.; Wei, Z. S.; Duan, X. G.; Long, M. C.; Spinney, R.; Dionysiou, D. D.; Xiao, R. Y.; Alvarez, P. J. J. Merits and limitations of radical vs. nonradical pathways in persulfate-based advanced oxidation processes. Environ. Sci. Technol. 2023, 57, 12153–12179.

[138]

Peng, X. M.; Wu, J. Q.; Zhao, Z. L.; Wang, X.; Dai, H. L.; Xu, L.; Xu, G. P.; Jian, Y.; Hu, F. P. Activation of peroxymonosulfate by single-atom Fe-g-C3N4 catalysts for high efficiency degradation of tetracycline via nonradical pathways: Role of high-valent iron-oxo species and Fe-N x sites. Chem. Eng. J. 2022, 427, 130803.

[139]

Peng, T.; Zhang, H. J.; Xia, S. M.; Zhou, S. Q.; Shi, Z.; Li, G. C.; Deng, L. MoS2 nanosheets anchored onto MIL-100(Fe)-derived FeS2 as a peroxymonosulfate activator for efficient sulfamethoxazole degradation: Insights into the mechanism. ACS EST Water 2023, 3, 213–226.

[140]

Guo, R. N.; Xi, B. D.; Guo, C. S.; Zhang, H.; Chen, L.; Liu, W.; Lv, N. Q.; Xu, J. Facet-dependent catalytic activity of MnFe Prussian blue analogues in peroxymonosulfate-activated system for efficient degradation of acetamiprid. ACS EST Water 2023, 3, 598–607.

[141]

Yang, Z. C.; Qian, J. S.; Yu, A. Q.; Pan, B. C. Singlet oxygen mediated iron-based Fenton-like catalysis under nanoconfinement. Proc. Natl. Acad. Sci. USA 2019, 116, 6659–6664.

[142]

Zhang, L. S.; Jiang, X. H.; Zhong, Z. A.; Tian, L.; Sun, Q.; Cui, Y. T.; Lu, X.; Zou, J. P.; Luo, S. L. Carbon nitride supported high-loading Fe single-atom catalyst for activation of peroxymonosulfate to generate 1O2 with 100 % selectivity. Angew. Chem., Int. Ed. 2021, 60, 21751–21755.

[143]

Wang, Q.; Lu, J. H.; Jiang, Y.; Yang, S. R.; Yang, Y.; Wang, Z. H. FeCo bimetallic metal organic framework nanosheets as peroxymonosulfate activator for selective oxidation of organic pollutants. Chem. Eng. J. 2022, 443, 136483.

[144]

Yang, L. W.; Xiong, Z. K.; Li, J. W.; Wu, Z. L.; Zhao, X. H.; Zhao, C. L.; Zhou, Y. X.; Qian, Y. X.; Lai, B. Iron active sites encapsulated in N-doped graphite for efficiently selective degradation of emerging contaminants via peroxymonosulfate (PMS) activation: Inherent roles of adsorption and electron-transfer dominated nonradical mechanisms. Chem. Eng. J. 2022, 444, 136623.

[145]

Mi, X. Y.; Wang, P. F.; Xu, S. Z.; Su, L. N.; Zhong, H.; Wang, H. T.; Li, Y.; Zhan, S. H. Almost 100 % peroxymonosulfate conversion to singlet oxygen on single-atom CoN2+2 sites. Angew. Chem., Int. Ed. 2021, 60, 4588–4593.

[146]

Yao, Y. Y.; Wang, C. H.; Yan, X.; Zhang, H.; Xiao, C. M.; Qi, J. W.; Zhu, Z. G.; Zhou, Y. J.; Sun, X. Y.; Duan, X. G. et al. Rational regulation of Co-N-C coordination for high-efficiency generation of 1O2 toward nearly 100% selective degradation of organic pollutants. Environ. Sci. Technol. 2022, 56, 8833–8843.

[147]

Yang, P. Z.; Long, Y. H.; Huang, W. L.; Liu, D. F. Single-atom copper embedded in two-dimensional MXene toward peroxymonosulfate activation to generate singlet oxygen with nearly 100% selectivity for enhanced Fenton-like reactions. Appl. Catal. B: Environ. 2023, 324, 122245.

[148]

Liang, X. Y.; Wang, D.; Zhao, Z. Y.; Li, T.; Gao, Y. W.; Hu, C. Coordination number dependent catalytic activity of single-atom cobalt catalysts for Fenton-like reaction. Adv. Funct. Mater. 2022, 32, 2203001.

[149]

Zhao, Z. Y.; Zhang, P.; Tan, H. B.; Liang, X. Y.; Li, T.; Gao, Y. W.; Hu, C. Low concentration of peroxymonosulfate triggers dissolved oxygen conversion over single atomic Fe-N3O1 sites for water decontamination. Small 2023, 19, 2205583.

[150]

Wang, F.; Gao, Y.; Fu, H. F.; Liu, S. S.; Wei, Y. W.; Wang, P.; Zhao, C.; Wang, J. F.; Wang, C. C. Almost 100% electron transfer regime over Fe-Co dual-atom catalyst toward pollutants removal: Regulation of peroxymonosulfate adsorption mode. Appl. Catal. B: Environ. 2023, 339, 123178.

[151]

Qin, Q. D.; Liu, T.; Zhang, J. X.; Wei, R.; You, S. J.; Xu, Y. Facile synthesis of oxygen vacancies enriched α-Fe2O3 for peroxymonosulfate activation: A non-radical process for sulfamethoxazole degradation. J. Hazard. Mater. 2021, 419, 126447.

[152]

Wu, L. Y.; Sun, Z. Q.; Zhen, Y. F.; Zhu, S. S.; Yang, C.; Lu, J.; Tian, Y.; Zhong, D.; Ma, J. Oxygen vacancy-induced nonradical degradation of organics: Critical trigger of oxygen (O2) in the Fe–Co LDH/peroxymonosulfate system. Environ. Sci. Technol. 2021, 55, 15400–15411.

[153]

Bu, Y. G.; Li, H. C.; Yu, W. J.; Pan, Y. F.; Li, L. J.; Wang, Y. F.; Pu, L. T.; Ding, J.; Gao, G. D.; Pan, B. C. Peroxydisulfate activation and singlet oxygen generation by oxygen vacancy for degradation of contaminants. Environ. Sci. Technol. 2021, 55, 2110–2120.

[154]

Xie, L.; Hao, J. J.; Wu, Y. S.; Xing, S. T. Non-radical activation of peroxymonosulfate with oxygen vacancy-rich amorphous MnO x for removing sulfamethoxazole in water. Chem. Eng. J. 2022, 436, 135260.

[155]

Xiao, G. F.; Xu, T. T.; Faheem, M.; Xi, Y. X.; Zhou, T.; Moryani, H. T.; Bao, J. G.; Du, J. K. Evolution of singlet oxygen by activating peroxydisulfate and peroxymonosulfate: A review. Int. J. Environ. Res. Public Health 2021, 18, 3344.

[156]

Shao, P. H.; Tian, J. Y.; Yang, F.; Duan, X. G.; Gao, S. S.; Shi, W. X.; Luo, X. B.; Cui, F. Y.; Luo, S. L.; Wang, S. B. Identification and regulation of active sites on nanodiamonds: Establishing a highly efficient catalytic system for oxidation of organic contaminants. Adv. Funct. Mater. 2018, 28, 1705295.

[157]

Zhang, Y.; Pan, H. H.; Murugananthan, M.; Sun, P.; Dionysiou, D. D.; Zhang, K. K.; Khan, A.; Zhang, Y. R. Glucose and melamine derived nitrogen-doped carbonaceous catalyst for nonradical peroxymonosulfate activation. Carbon 2020, 156, 399–409.

[158]

Li, N.; Li, R.; Duan, X. G.; Yan, B. B.; Liu, W.; Cheng, Z. J.; Chen, G. Y.; Hou, L.; Wang, S. B. Correlation of active sites to generated reactive species and degradation routes of organics in peroxymonosulfate activation by Co-loaded carbon. Environ. Sci. Technol. 2021, 55, 16163–16174.

[159]

Guo, D. H.; Shibuya, R.; Akiba, C.; Saji, S.; Kondo, T.; Nakamura, J. Active sites of nitrogen-doped carbon materials for oxygen reduction reaction clarified using model catalysts. Science 2016, 351, 361–365.

[160]

Cao, P. K.; Quan, X.; Zhao, K.; Chen, S.; Yu, H. T.; Niu, J. F. Selective electrochemical H2O2 generation and activation on a bifunctional catalyst for heterogeneous electro-Fenton catalysis. J. Hazard. Mater. 2020, 382, 121102.

[161]

Xu, L.; Wu, C. X.; Chai, C.; Cao, S. Y.; Bai, X.; Ma, K. Y.; Jin, X.; Shi, X.; Jin, P. K. Adsorption of micropollutants from wastewater using iron and nitrogen co-doped biochar: Performance, kinetics and mechanism studies. J. Hazard. Mater. 2022, 424, 127606.

[162]

Cheng, Y. Z.; Wang, B. Y.; Shen, J. M.; Yan, P. W.; Kang, J.; Wang, W. Q.; Bi, L. B.; Zhu, X. W.; Li, Y. B.; Wang, S. Y. et al. Preparation of novel N-doped biochar and its high adsorption capacity for atrazine based on π-π electron donor-acceptor interaction. J. Hazard. Mater. 2022, 432, 128757.

[163]

Zhou, Y.; Jiang, J.; Gao, Y.; Pang, S. Y.; Yang, Y.; Ma, J.; Gu, J.; Li, J.; Wang, Z.; Wang, L. H. et al. Activation of peroxymonosulfate by phenols: Important role of Quinone intermediates and involvement of singlet oxygen. Water Res. 2017, 125, 209–218.

[164]

Zhou, Y.; Jiang, J.; Gao, Y.; Ma, J.; Pang, S. Y.; Li, J.; Lu, X. T.; Yuan, L. P. Activation of peroxymonosulfate by benzoquinone: A novel nonradical oxidation process. Environ. Sci. Technol. 2015, 49, 12941–12950.

[165]

Schneider, J. T.; Firak, D. S.; Ribeiro, R. R.; Peralta-Zamora, P. Use of scavenger agents in heterogeneous photocatalysis: Truths, half-truths, and misinterpretations. Phys. Chem. Chem. Phys. 2020, 22, 15723–15733.

[166]

Sheng, B.; Deng, C. Y.; Li, Y. F.; Xie, S. J.; Wang, Z. H.; Sheng, H.; Zhao, J. C. In situ hydroxylation of a single-atom iron catalyst for preferential 1O2 Production from H2O2. ACS Catal. 2022, 12, 14679–14688.

[167]

Wang, B. Q.; Cheng, C.; Jin, M. M.; He, J.; Zhang, H.; Ren, W.; Li, J.; Wang, D. S.; Li, Y. D. A site distance effect induced by reactant molecule matchup in single-atom catalysts for Fenton-like reactions. Angew. Chem., Int. Ed. 2022, 61, e202207268.

[168]

Cheng, C.; Ren, W.; Miao, F.; Chen, X. T.; Chen, X. X.; Zhang, H. Generation of FeIV=O and its contribution to Fenton-like reactions on a single-atom iron-N-C catalyst. Angew. Chem., Int. Ed. 2023, 62, e202218510.

[169]

Zhou, X.; Ke, M. K.; Huang, G. X.; Chen, C.; Chen, W. X.; Liang, K.; Qu, Y. T.; Yang, J.; Wang, Y.; Li, F. T. et al. Identification of Fenton-like active Cu sites by heteroatom modulation of electronic density. Proc. Natl. Acad. Sci. USA 2022, 119, e2119492119.

[170]

Zhou, X. Y.; Jin, Z. Y.; Zhang, J. Z.; Hu, K. L.; Liu, S. D.; Qiu, H. J.; Lin, X. Curvature effects on the bifunctional oxygen catalytic performance of single atom metal-N-C. Nanoscale 2023, 15, 2276–2284.

[171]

Yang, Z. Y.; Yang, X. F.; An, G. Y.; Wang, D. S. Regulating spin state of Fe active sites by the P-doping strategy for enhancing peroxymonosulfate activation. Appl. Catal. B: Environ. 2023, 330, 122618.

[172]

Wang, Z. W.; Almatrafi, E.; Wang, H.; Qin, H.; Wang, W. J.; Du, L.; Chen, S.; Zeng, G. M.; Xu, P. Cobalt single atoms anchored on oxygen-doped tubular carbon nitride for efficient peroxymonosulfate activation: Simultaneous coordination structure and morphology modulation. Angew. Chem., Int. Ed. 2022, 61, e202202338.

[173]

Song, J. S.; Hou, N. N.; Liu, X. C.; Antonietti, M.; Zhang, P. J.; Ding, R. R.; Song, L.; Wang, Y.; Mu, Y. Asymmetrically coordinated CoB1N3 moieties for selective generation of high-valence Co-oxo Species via coupled electron-proton transfer in Fenton-like reactions. Adv. Mater. 2023, 35, 2209552.

[174]

Yang, M.; Wu, K. Y.; Sun, S. D.; Duan, J. L.; Liu, X.; Cui, J.; Liang, S. H.; Ren, Y. J. Unprecedented relay catalysis of curved Fe1-N4 single-atom site for remarkably efficient 1O2 generation. ACS Catal. 2023, 13, 681–691.

[175]

Wu, Q. Y.; Yang, Z. W.; Wang, Z. W.; Wang, W. L. Oxygen doping of cobalt-single-atom coordination enhances peroxymonosulfate activation and high-valent cobalt-oxo species formation. Proc. Natl. Acad. Sci. USA 2023, 120, e2219923120.

[176]

Yi, H.; Almatrafi, E.; Ma, D. S.; Huo, X. Q.; Qin, L.; Li, L.; Zhou, X. R.; Zhou, C. Y.; Zeng, G. M.; Lai, C. Spatial confinement: A green pathway to promote the oxidation processes for organic pollutants removal from water. Water Res. 2023, 233, 119719.

[177]

Qian, J. S.; Gao, X.; Pan, B. C. Nanoconfinement-mediated water treatment: From fundamental to application. Environ. Sci. Technol. 2020, 54, 8509–8526.

[178]

Zhang, B. T.; Yan, Z. H.; Liu, Y. C.; Chen, Z.; Zhang, Y. K.; Fan, M. H. Nanoconfinement in advanced oxidation processes. Crit. Rev. Environ. Sci. Technol. 2023, 53, 1197–1228.

[179]

Zhang, S.; Hedtke, T.; Zhou, X. C.; Elimelech, M.; Kim, J. H. Environmental applications of engineered materials with nanoconfinement. ACS EST Eng. 2021, 1, 706–724.

[180]

Gao, Y.; Wu, T. W.; Yang, C. D.; Ma, C.; Zhao, Z. Y.; Wu, Z. H.; Cao, S. J.; Geng, W.; Wang, Y.; Yao, Y. Y. et al. Activity trends and mechanisms in peroxymonosulfate-assisted catalytic production of singlet oxygen over atomic metal-N-C catalysts. Angew. Chem., Int. Ed. 2021, 60, 22513–22521.

[181]

Zhang, Y. Z.; Chen, X.; Liang, C.; Yin, L. F.; Yang, Y. Reconstructing the coordination environment of single atomic Fe-catalysts for boosting the Fenton-like degradation activities. Appl. Catal. B: Environ. 2022, 315, 121536.

[182]

Yao, Y. Y.; Wang, C. H.; Yang, Y. P.; Zhang, S.; Yan, X.; Xiao, C. M.; Zhou, Y. J.; Zhu, Z. G.; Qi, J. W.; Sun, X. Y. et al. Mn-Co dual sites relay activation of peroxymonosulfate for accelerated decontamination. Appl. Catal. B: Environ. 2023, 330, 122656.

[183]

Wu, S. H.; Yang, Z. W.; Zhou, Z. Y.; Li, X.; Lin, Y.; Cheng, J. J.; Yang, C. P. Catalytic activity and reaction mechanisms of single-atom metals anchored on nitrogen-doped carbons for peroxymonosulfate activation. J. Hazard. Mater. 2023, 459, 132133.

[184]

Ren, T. F.; Yin, M. X.; Chen, S. N.; Ouyang, C. P.; Huang, X.; Zhang, X. Y. Single-atom Fe-N4 sites for catalytic ozonation to selectively induce a nonradical pathway toward wastewater purification. Environ. Sci. Technol. 2023, 57, 3623–3633.

[185]

Zhang, H. C.; Cui, P. X.; Xie, D. H.; Wang, Y. J.; Wang, P.; Sheng, G. P. Axial N ligand-modulated ultrahigh activity and selectivity hyperoxide activation over single-atoms nanozymes. Adv. Sci. 2023, 10, 2205681.

[186]

Qian, K.; Chen, H.; Li, W. L.; Ao, Z. M.; Wu, Y. N.; Guan, X. H. Single-atom Fe catalyst outperforms its homogeneous counterpart for activating peroxymonosulfate to achieve effective degradation of organic contaminants. Environ. Sci. Technol. 2021, 55, 7034–7043.

[187]

Cui, J. H.; Li, L. N.; Shao, S. T.; Gao, J. Y.; Wang, K.; Yang, Z. C.; Zeng, S. Q.; Diao, C. Z.; Zhao, Y. B.; Hu, C. Regulating the metal-support interaction: Double jump to reach the efficiency apex of the Fe-N4-catalyzed Fenton-like reaction. ACS Catal. 2022, 12, 14954–14963.

[188]

Li, F.; Lu, Z. C.; Li, T.; Zhang, P.; Hu, C. Origin of the excellent activity and selectivity of a single-atom copper catalyst with unsaturated Cu-N2 sites via peroxydisulfate activation: Cu(III) as a dominant oxidizing species. Environ. Sci. Technol. 2022, 56, 8765–8775.

[189]

Zhou, C. Y.; Liang, Y. T.; Xia, W.; Almatrafi, E.; Song, B.; Wang, Z. W.; Zeng, Y. X.; Yang, Y.; Shang, Y. N.; Wang, C. H. et al. Single atom Mn anchored on N-doped porous carbon derived from spirulina for catalyzed peroxymonosulfate to degradation of emerging organic pollutants. J. Hazard. Mater. 2023, 441, 129871.

[190]

Zhu, C. Q.; Cun, F.; Fan, Z. W.; Nie, Y.; Du, Q.; Liu, F. Q.; Yang, W. B.; Li, A. M. Heterogeneous Fe-Co dual-atom catalyst outdistances the homogeneous counterpart for peroxymonosulfate-assisted water decontamination: New surface collision oxidation path and diatomic synergy. Water Res. 2023, 241, 120164.

[191]

He, Y. L.; He, C. S.; Lai, L. D.; Zhou, P.; Zhang, H.; Li, L. L.; Xiong, Z. K.; Mu, Y.; Pan, Z. C.; Yao, G. et al. Activating peroxymonosulfate by N and O co-doped porous carbon for efficient BPA degradation: A re-visit to the removal mechanism and the effects of surface unpaired electrons. Appl. Catal. B: Environ. 2022, 314, 121390.

[192]

Shao, P. H.; Yu, S. P.; Duan, X. G.; Yang, L. M.; Shi, H.; Ding, L.; Tian, J. Y.; Yang, L. X.; Luo, X. B.; Wang, S. B. Potential difference driving electron transfer via defective carbon nanotubes toward selective oxidation of organic micropollutants. Environ. Sci. Technol. 2020, 54, 8464–8472.

[193]

Huang, M. J.; Han, Y.; Xiang, W.; Zhong, D. L.; Wang, C.; Zhou, T.; Wu, X. H.; Mao, J. In situ-formed phenoxyl radical on the CuO surface triggers efficient persulfate activation for phenol degradation. Environ. Sci. Technol. 2021, 55, 15361–15370.

[194]

Li, X. Y.; Lv, R. L.; Zhang, W. M.; Li, M. Y.; Lu, J. H.; Ren, Y.; Yin, Y.; Liu, J. H. Amorphous zirconium oxide activates peroxymonosulfate for selective degradation of organic compounds: Performance, mechanisms and structure-activity relationship. Water Res. 2023, 228, 119363.

[195]

Du, X. D.; Zhang, Y. Q.; Hussain, I.; Huang, S. B.; Huang, W. L. Insight into reactive oxygen species in persulfate activation with copper oxide: Activated persulfate and trace radicals. Chem. Eng. J. 2017, 313, 1023–1032.

[196]

Du, X. D.; Zhang, Y. Q.; Si, F.; Yao, C. H.; Du, M. M.; Hussain, I.; Kim, H.; Huang, S. B.; Lin, Z.; Hayat, W. Persulfate non-radical activation by nano-CuO for efficient removal of chlorinated organic compounds: Reduced graphene oxide-assisted and CuO (0 0 1) facet-dependent. Chem. Eng. J. 2019, 356, 178–189.

[197]

Zhou, P.; Meng, S.; Sun, M. L.; Hu, K. S.; Yang, Y. Y.; Lai, B.; Wang, S. B.; Duan, X. G. Insights into boron accelerated Fenton-like chemistry: Sustainable and fast FeIII/FeII circulation. Sep. Purif. Technol. 2023, 317, 123860.

[198]

Luo, K. Y.; Shi, Y.; Huang, R. F.; Wei, X. P.; Wu, Z. L.; Zhou, P.; Zhang, H.; Wang, Y.; Xiong, Z. K.; Lai, B. Activation of periodate by N-doped iron-based porous carbon for degradation of sulfisoxazole: Significance of catalyst-mediated electron transfer mechanism. J. Hazard. Mater. 2023, 457, 131790.

[199]

Yang, L. W.; Yang, F. S.; Zhang, H.; Zhou, H. Y.; Luo, M. F.; Liu, Y. M.; Zhao, C. L.; Zheng, L.; Lai, B. Insight into the electron transfer regime of periodate activation on MnO2: The critical role of surface Mn(IV). J. Hazard. Mater. 2023, 454, 131479.

[200]

Guo, Z. Y.; Sun, R. B.; Huang, Z. X.; Han, X.; Wang, H. R.; Chen, C.; Liu, Y. Q.; Zheng, X. S.; Zhang, W. J.; Hong, X. et al. Crystallinity engineering for overcoming the activity-stability tradeoff of spinel oxide in Fenton-like catalysis. Proc. Natl. Acad. Sci. USA 2023, 120, e2220608120.

[201]

Zhang, Y. J.; Chen, J. J.; Huang, G. X.; Li, W. W.; Yu, H. Q.; Elimelech, M. Distinguishing homogeneous advanced oxidation processes in bulk water from heterogeneous surface reactions in organic oxidation. Proc. Natl. Acad. Sci. USA 2023, 120, e2302407120.

[202]

Duan, X. D.; Niu, X. X.; Gao, J.; Wacławek, S.; Tang, L.; Dionysiou, D. D. Comparison of sulfate radical with other reactive species. Curr. Opin. Chem. Eng. 2022, 38, 100867.

[203]

Lin, J. Y.; Ye, W. Y.; Xie, M.; Seo, D. H.; Luo, J. Q.; Wan, Y. H.; Van der Bruggen, B. Environmental impacts and remediation of dye-containing wastewater. Nat. Rev. Earth Environ. 2023, 4, 785–803.

[204]

Ribeiro, J. P.; Marques, C. C.; Portugal, I.; Nunes, M. I. Fenton processes for AOX removal from a Kraft pulp bleaching industrial wastewater: Optimisation of operating conditions and cost assessment. J. Environ. Chem. Eng. 2020, 8, 104032.

[205]

Cortez, S.; Teixeira, P.; Oliveira, R.; Mota, M. Evaluation of Fenton and ozone-based advanced oxidation processes as mature landfill leachate pre-treatments. J. Environ. Manage. 2011, 92, 749–755.

[206]

Huang, M. J.; Li, Y. S.; Zhang, C. Q.; Cui, C.; Huang, Q. Q.; Li, M. K.; Qiang, Z. M.; Zhou, T.; Wu, X. H.; Yu, H. Q. Facilely tuning the intrinsic catalytic sites of the spinel oxide for peroxymonosulfate activation: From fundamental investigation to pilot-scale demonstration. Proc. Natl. Acad. Sci. USA 2022, 119, e2202682119.

[207]

Cai, Q. Q.; Lee, B. C. Y.; Ong, S. L.; Hu, J. Y. Fluidized-bed Fenton technologies for recalcitrant industrial wastewater treatment-recent advances, challenges and perspective. Water Res. 2021, 190, 116692.

[208]

Hu, X. N.; Zhu, M. S. Were persulfate-based advanced oxidation processes really understood? Basic concepts, cognitive biases, and experimental details. Environ. Sci. Technol. 2024, 58, 10415–10444.

[209]

Wang, Y. J.; Yu, G.; Deng, S. B.; Huang, J.; Wang, B. The electro-peroxone process for the abatement of emerging contaminants: Mechanisms, recent advances, and prospects. Chemosphere 2018, 208, 640–654.

[210]

Plakas, K. V.; Sklari, S. D.; Yiankakis, D. A.; Sideropoulos, G. T.; Zaspalis, V. T.; Karabelas, A. J. Removal of organic micropollutants from drinking water by a novel electro-Fenton filter: Pilot-scale studies. Water Res. 2016, 91, 183–194.

[211]

Barazesh, J. M.; Prasse, C.; Wenk, J.; Berg, S.; Remucal, C. K.; Sedlak, D. L. Trace element removal in distributed drinking water treatment systems by cathodic H2O2 production and UV photolysis. Environ. Sci. Technol. 2018, 52, 195–204.

[212]

Liu, S.; Chen, Z. L.; Shen, Y.; Chen, H.; Li, Z. X.; Cai, L. M.; Yang, H. B.; Zhu, C. S.; Shen, J. M.; Kang, J. et al. Simultaneous regeneration of activated carbon and removal of adsorbed atrazine by ozonation process: From laboratory scale to pilot studies. Water Res. 2024, 251, 121113.

[213]

Guo, L. J.; Zhao, L. M.; Tang, Y. L.; Zhou, J. F.; Shi, B. Peroxydisulfate activation using Fe, Co co-doped biochar and synergistic effects on tetracycline degradation. Chem. Eng. J. 2023, 452, 139381.

[214]

Qin, W. C.; Dong, Y. L.; Jiang, H.; Loh, W. H.; Imbrogno, J.; Swenson, T. M.; Garcia-Rodriguez, O.; Lefebvre, O. A new approach of simultaneous adsorption and regeneration of activated carbon to address the bottlenecks of pharmaceutical wastewater treatment. Water Res. 2024, 252, 121180.

[215]

Xu, J. W.; Zheng, X. L.; Feng, Z. P.; Lu, Z. Y.; Zhang, Z. W.; Huang, W.; Li, Y. B.; Vuckovic, D.; Li, Y. Q.; Dai, S. et al. Organic wastewater treatment by a single-atom catalyst and electrolytically produced H2O2. Nat. Sustain. 2020, 4, 233–241.

[216]
Zhang, G.; Li, Y. Q.; Zhao, C. X.; Gu, J. B.; Zhou, G.; Shi, Y. F.; Zhou, Q.; Xiao, F.; Fu, W. J.; Chen, Q. B. et al. Redox-neutral electrochemical decontamination of hypersaline wastewater with high technology readiness level. Nat. Nanotechnol., in press, DOI: 10.1038/s41565-024-01669-3.
[217]

Dang, Q.; Zhang, W.; Liu, J. Q.; Wang, L. T.; Wu, D. L.; Wang, D. J.; Lei, Z. D.; Tang, L. Bias-free driven ion assisted photoelectrochemical system for sustainable wastewater treatment. Nat. Commun. 2023, 14, 8413.

[218]

Yu, Z. W.; Jin, X. M.; Guo, Y.; Liu, Q.; Xiang, W. Y.; Zhou, S.; Wang, J. Y.; Yang, D. L.; Wu, H. B.; Wang, J. Decoupled oxidation process enabled by atomically dispersed copper electrodes for in-situ chemical water treatment. Nat. Commun. 2024, 15, 1186.

[219]

Liu, H. Z.; Shu, X. X.; Huang, M. J.; Wu, B. B.; Chen, J. J.; Wang, X. S.; Li, H. L.; Yu, H. Q. Tailoring d-band center of high-valent metal-oxo species for pollutant removal via complete polymerization. Nat. Commun. 2024, 15, 2327.

[220]

Zhang, P. P.; Yang, Y. Y.; Duan, X. G.; Wang, S. B. Oxidative polymerization versus degradation of organic pollutants in heterogeneous catalytic persulfate chemistry. Water Res. 2024, 255, 121485.

[221]

Zhang, Y. J.; Yu, H. Q. Mineralization or polymerization: That is the question. Environ. Sci. Technol. 2024, 58, 11205–11208.

Nano Research
Pages 9300-9325
Cite this article:
Wang S, Lu Y, Pei S, et al. Selective oxidation of emerging organic contaminants in heterogeneous Fenton-like systems. Nano Research, 2024, 17(11): 9300-9325. https://doi.org/10.1007/s12274-024-6874-0
Topics:

620

Views

4

Crossref

2

Web of Science

4

Scopus

0

CSCD

Altmetrics

Received: 28 May 2024
Revised: 08 July 2024
Accepted: 09 July 2024
Published: 06 August 2024
© Tsinghua University Press 2024
Return