AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Electrolyte design for Li-conductive solid-electrolyte interphase enabling benchmark performance for all-solid-state lithium-metal batteries

Cailing Fan1Niaz Ahmad1( )Tinglu Song3Chaoyuan Zeng1( )Xiaoxiao Liang1Qinxi Dong1( )Wen Yang2( )
School of Chemistry and Chemical Engineering, Key Laboratory of Ministry of Education for Advanced Materials in Tropical Island Resources, Collaborative Innovation Center of Ecological Civilization, Hainan University, Haikou 570228, China
Key Laboratory of Cluster Science of Ministry of Education, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, China
Experimental Center of Advanced Materials, School of Materials Science and Engineering, Beijing Institute of Technology, Beijing 100081, China
Show Author Information

Graphical Abstract

F and N dopant regulates the composition and chemistry of solid-electrolyte interphase (SEI) for Li7P3S11 which thereby realizes lowest electronic conductivity suppresses the nucleation of Li-dendrites inside Li6.58P2.76N0.03S10.12F0.05-glass-ceramic electrolyte (gce). Additionally, Li6.58P2.76N0.03S10.12F0.05-gce develops a robust and highly Li+ conductive SEI enriched with LiF and Li3N ensures intimate interfacial contact, prevents reductive reactions and void formation and thus enabling fast Li+ kinetics across the SEI.

Abstract

Sulfide-based solid-state electrolytes (SSEs) with high Li+ conductivity ( σLi+) and trifling grain boundaries have great potential for all-solid-state lithium-metal batteries (ASSLMBs). Nonetheless, the in-situ development of mixed ionic-electronic conducting solid-electrolyte interphase (SEI) at sulfide electrolyte/Li-metal anode interface induces uneven Li electrodeposition, which causes Li-dendrites and void formation, significantly severely deteriorating ASSLMBs. Herein, we propose a dual anionic, e.g., F and N, doping strategy to Li7P3S11, tuning its composition in conjunction with the chemistry of SEI. Therefore, novel Li6.58P2.76N0.03S10.12F0.05 glass-ceramic electrolyte (Li7P3S11-5LiF-3Li3N-gce) achieved superior ionic (4.33 mS·cm−1) and lowest electronic conductivity of 4.33 × 10−10 S·cm−1 and thus, offered superior critical current density of 0.90 mA·cm−2 (2.5 times > Li7P3S11) at room temperature (RT). Notably, Li//Li cell with Li6.58P2.76N0.03S10.12F0.05-gce cycled stably over 1000 and 600 h at 0.2 and 0.3 mA·cm−2 credited to robust and highly conductive SEI (in-situ) enriched with LiF and Li3N species. Li3N’s wettability renders SEI to be highly Li+ conductive, ensures an intimate interfacial contact, blocks reductive reactions, prevents Li-dendrites and facilitates fast Li+ kinetics. Consequently, LiNi0.8Co0.15Al0.05O2 (NCA)/Li6.58P2.76N0.03S10.12F0.05-gce/Li cell exhibited an outstanding first reversible capacity of 200.8/240.1 mAh·g−1 with 83.67% Coulombic efficiency, retained 85.11% of its original reversible capacity at 0.3 mA·cm−2 over 165 cycles at RT.

Electronic Supplementary Material

Download File(s)
6871_ESM.pdf (972.2 KB)

References

[1]

Whittingham, M. S. Electrical energy storage and intercalation chemistry. Science 1976, 192, 1126–1127.

[2]

Yoshino, A. The birth of the lithium-ion battery. Angew. Chem., Int. Ed. 2012, 51, 5798–5800.

[3]

Wang, A. P.; Kadam, S.; Li, H.; Shi, S. Q.; Qi, Y. Review on modeling of the anode solid electrolyte interphase (SEI) for lithium-ion batteries. npj Comput. Mater. 2018, 4, 15.

[4]

Zhang, X. L.; Tang, Y. B.; Zhang, F.; Lee, C. S. A novel aluminum-graphite dual-ion battery. Adv. Energy Mater. 2016, 6, 1502588.

[5]

Wang, M.; Jiang, C. L.; Zhang, S. Q.; Song, X. H.; Tang, Y. B.; Cheng, H. M. Reversible calcium alloying enables a practical room-temperature rechargeable calcium-ion battery with a high discharge voltage. Nat. Chem. 2018, 10, 667–672.

[6]
Wang, L.; Lu, J. J.; Li, S. Y.; Xi, F. S.; Tong, Z. Q.; Chen, X. H.; Wei, K. X.; Ma, W. H. Controllable interface engineering for the preparation of high rate silicon anode. Adv. Funct. Mater., in press, DOI: 10.1002/adfm.202403574.
[7]

Janek, J.; Zeier, W. G. Challenges in speeding up solid-state battery development. Nat. Energy 2023, 8, 230–240.

[8]

Famprikis, T.; Canepa, P.; Dawson, J. A.; Islam, M. S.; Masquelier, C. Fundamentals of inorganic solid-state electrolytes for batteries. Nat. Mater. 2019, 18, 1278–1291.

[9]

Manthiram, A.; Yu, X. W.; Wang, S. F. Lithium battery chemistries enabled by solid-state electrolytes. Nat. Rev. Mater. 2017, 2, 16103.

[10]

Wu, J. H.; Liu, S. F.; Han, F. D.; Yao, X. Y.; Wang, C. S. Lithium/sulfide all-solid-state batteries using sulfide electrolytes. Adv. Mater. 2021, 33, 2000751.

[11]

Nose, M.; Kato, A.; Sakuda, A.; Hayashi, A.; Tatsumisago, M. Evaluation of mechanical properties of Na2S–P2S5 sulfide glass electrolytes. J. Mater. Chem. A 2015, 3, 22061–22065.

[12]

Zhu, Y. Z.; He, X. F.; Mo, Y. F. Origin of outstanding stability in the lithium solid electrolyte materials: Insights from thermodynamic analyses based on first-principles calculations. ACS Appl. Mater. Interfaces 2015, 7, 23685–23693.

[13]

Han, F. D.; Zhu, Y. Z.; He, X. F.; Mo, Y. F.; Wang, C. S. Electrochemical stability of Li10GeP2S12 and Li7La3Zr2O12 solid electrolytes. Adv. Energy Mater. 2016, 6, 1501590.

[14]

Ji, X.; Hou, S.; Wang, P. F.; He, X. Z.; Piao, N.; Chen, J.; Fan, X. L.; Wang, C. S. Solid-state electrolyte design for lithium dendrite suppression. Adv. Mater. 2020, 32, 2002741.

[15]

Han, F. D.; Westover, A. S.; Yue, J.; Fan, X. L.; Wang, F.; Chi, M. F.; Leonard, D. N.; Dudney, N. J.; Wang, H.; Wang, C. S. High electronic conductivity as the origin of lithium dendrite formation within solid electrolytes. Nat. Energy 2019, 4, 187–196.

[16]

Wenzel, S.; Randau, S.; Leichtweiß, T.; Weber, D. A.; Sann, J.; Zeier, W. G.; Janek, J. Direct observation of the interfacial instability of the fast ionic conductor Li10GeP2S12 at the lithium metal anode. Chem. Mater. 2016, 28, 2400–2407.

[17]

Liu, C.; Chen, B. T.; Zhang, T. R.; Zhang, J. C.; Wang, R. Y.; Zheng, J.; Mao, Q. J.; Liu, X. F. Electron redistribution enables redox-resistible Li6PS5Cl towards high-performance all-solid-state lithium batteries. Angew. Chem., Int. Ed. 2023, 62, e202302655.

[18]

Fan, X. L.; Ji, X.; Han, F. D.; Yue, J.; Chen, J.; Chen, L.; Deng, T.; Jiang, J. J.; Wang, C. S. Fluorinated solid electrolyte interphase enables highly reversible solid-state Li metal battery. Sci. Adv. 2018, 4, eaau9245.

[19]

Wei, C. C.; Liu, C.; Xiao, Y. J.; Wu, Z. K.; Luo, Q. Y.; Jiang, Z. L.; Wang, Z. Y.; Zhang, L.; Cheng, S. J.; Yu, C. SnF2-induced multifunctional interface-stabilized Li5.5PS4.5Cl1.5-based all-solid-state lithium metal batteries. Adv. Funct. Mater. 2024, 34, 2314306.

[20]

Wei, C. C.; Xiao, Y. J.; Wu, Z. K.; Liu, C.; Luo, Q. Y.; Jiang, Z. L.; Li, L.; Ming, L.; Yang, J.; Cheng, S. J. et al. Construction of LiCl/LiF/LiZn hybrid SEI interface achieving high-performance sulfide-based all-solid-state lithium metal batteries. Sci. China Chem. 2024, 67, 1990–2001.

[21]

Luo, Q. Y.; Ming, L.; Zhang, D.; Wei, C. C.; Wu, Z. K.; Jiang, Z. L.; Liu, C.; Liu, S. Y.; Cao, K. C.; Zhang, L. et al. Constructing Br-doped Li10SnP2S12-based all-solid-state batteries with superior performances. Energy Mater. Adv. 2023, 4, 0065.

[22]

Chen, S.; Yu, C.; Wei, C. C.; Jiang, Z. L.; Zhang, Z. Q.; Peng, L. F.; Cheng, S. J.; Xie, J. Unraveling electrochemical stability and reversible redox of Y-doped Li2ZrCl6 solid electrolytes. Energy Mater. Adv. 2023, 4, 0019.

[23]

Han, F. D.; Yue, J.; Zhu, X. Y.; Wang, C. S. Suppressing Li dendrite formation in Li2S-P2S5 solid electrolyte by LiI incorporation. Adv. Energy Mater. 2018, 8, 1703644.

[24]

Zhao, F. P.; Sun, Q.; Yu, C.; Zhang, S. M.; Adair, K.; Wang, S. Z.; Liu, Y. L.; Zhao, Y.; Liang, J. W.; Wang, C. H. et al. Ultrastable anode interface achieved by fluorinating electrolytes for all-solid-state Li metal batteries. ACS Energy Lett. 2020, 5, 1035–1043.

[25]

Liu, Y.; Su, H.; Li, M.; Xiang, J. Y.; Wu, X. Z.; Zhong, Y.; Wang, X. L.; Xia, X. H.; Gu, C. D.; Tu, J. P. In situ formation of a Li3N-rich interface between lithium and argyrodite solid electrolyte enabled by nitrogen doping. J. Mater. Chem. A 2021, 9, 13531–13539.

[26]

Xu, R. C.; Xia, X. H.; Wang, X. L.; Xia, Y.; Tu, J. P. Tailored Li2S–P2S5 glass-ceramic electrolyte by MoS2 doping, possessing high ionic conductivity for all-solid-state lithium-sulfur batteries. J. Mater. Chem. A 2017, 5, 2829–2834.

[27]

Lv, L.; Ahmad, N.; Zeng, C. Y.; Yu, P. W.; Song, T. L.; Dong, Q. X.; Yang, W. Enhanced air and electrochemical stability of Li7P2.9Ge0.05S10.75O0.1 electrolytes with high ionic conductivity for thiophosphate-based all-solid-state batteries. ACS Appl. Mater. Interfaces 2022, 14, 39985–39995.

[28]

Wang, Z. X.; Jiang, Y.; Wu, J.; Jiang, Y.; Ma, W. C.; Shi, Y. R.; Liu, X. Y.; Zhao, B.; Xu, Y.; Zhang, J. J. Doping effects of metal cation on sulfide solid electrolyte/lithium metal interface. Nano Energy 2021, 84, 105906.

[29]

Arnold, W.; Shreyas, V.; Li, Y.; Koralalage, M. K.; Jasinski, J. B.; Thapa, A.; Sumanasekera, G.; Ngo, A. T.; Narayanan, B.; Wang, H. Synthesis of fluorine-doped lithium argyrodite solid electrolytes for solid-state lithium metal batteries. ACS Appl. Mater. Interfaces 2022, 14, 11483–11492.

[30]

Kaup, K.; Bazak, J. D.; Vajargah, S. H.; Wu, X. H.; Kulisch, J.; Goward, G. R.; Nazar, L. F. A lithium oxythioborosilicate solid electrolyte glass with superionic conductivity. Adv. Energy Mater. 2020, 10, 1902783.

[31]

Ahmad, N.; Zhou, L.; Faheem, M.; Tufail, M. K.; Yang, L.; Chen, R. J.; Zhou, Y. D.; Yang, W. Enhanced air stability and high Li-ion conductivity of Li6.988P2.994Nb0.2S10.934O0.6 glass-ceramic electrolyte for all-solid-state lithium-sulfur batteries. ACS Appl. Mater. Interfaces 2020, 12, 21548–21558.

[32]

Zhou, L.; Tufail, M. K.; Liao, Y. Z.; Ahmad, N.; Yu, P. W.; Song, T. L.; Chen, R. J.; Yang, W. Tailored carrier transport path by interpenetrating networks in cathode composite for high performance all-solid-state Li-SeS2 batteries. Adv. Fiber Mater. 2022, 4, 487–502.

[33]

Zhao, B. S.; Wang, L.; Chen, P.; Liu, S.; Li, G. R.; Xu, N.; Wu, M. T.; Gao, X. P. Congener substitution reinforced Li7P2.9Sb0.1S10.75O0.25 glass-ceramic electrolytes for all-solid-state lithium-sulfur batteries. ACS Appl. Mater. Interfaces 2021, 13, 34477–34485.

[34]

Deiseroth, H. J.; Kong, S. T.; Eckert, H.; Vannahme, J.; Reiner, C.; Zaiß, T.; Schlosser, M. Li6PS5X: A class of crystalline Li-rich solids with an unusually high Li+ mobility. Angew. Chem. 2008, 120, 767–770.

[35]

Ahmad, N.; Sun, S. R.; Yu, P. W.; Yang, W. Design unique air-stable and Li-metal compatible sulfide electrolyte via exploration of anion functional units for all-solid-state lithium-metal batteries. Adv. Funct. Mater. 2022, 32, 2201528.

[36]

Seino, Y.; Nakagawa, M.; Senga, M.; Higuchi, H.; Takada, K.; Sasaki, T. Analysis of the structure and degree of crystallisation of 70Li2S–30P2S5 glass ceramic. J. Mater. Chem. A 2015, 3, 2756–2761.

[37]

Minami, K.; Mizuno, F.; Hayashi, A.; Tatsumisago, M. Structure and properties of the 70Li2S·(30 − x)P2S5· xP2O5 oxysulfide glasses and glass-ceramics. J. Non-Cryst. Solids 2008, 354, 370–373.

[38]

Murakami, M.; Shimoda, K.; Shiotani, S.; Mitsui, A.; Ohara, K.; Onodera, Y.; Arai, H.; Uchimoto, Y.; Ogumi, Z. Dynamical origin of ionic conductivity for Li7P3S11 metastable crystal as studied by 6/7Li and 31P solid-state NMR. J. Phys. Chem. C 2015, 119, 24248–24254.

[39]

Kim, K. H.; Martin, S. W. Structures and properties of oxygen-substituted Li10SiP2S12− x O x solid-state electrolytes. Chem. Mater. 2019, 31, 3984–3991.

[40]

Jiang, Z.; Liang, T. B.; Liu, Y.; Zhang, S. Z.; Li, Z. X.; Wang, D. H.; Wang, X. L.; Xia, X. H.; Gu, C. D.; Tu, J. P. Improved ionic conductivity and Li dendrite suppression capability toward Li7P3S11-based solid electrolytes triggered by Nb and O cosubstitution. ACS Appl. Mater. Interfaces 2020, 12, 54662–54670.

[41]

Liu, Y.; Peng, H. L.; Su, H.; Zhong, Y.; Wang, X. L.; Xia, X. H.; Gu, C. D.; Tu, J. P. Ultrafast synthesis of I-rich lithium argyrodite glass-ceramic electrolyte with high ionic conductivity. Adv. Mater. 2022, 34, 2107346.

[42]

Yamane, H.; Shibata, M.; Shimane, Y.; Junke, T.; Seino, Y.; Adams, S.; Minami, K.; Hayashi, A.; Tatsumisago, M. Crystal structure of a superionic conductor, Li7P3S11. Solid State Ionics 2007, 178, 1163–1167.

[43]

Mizuno, F.; Hayashi, A.; Tadanaga, K.; Tatsumisago, M. High lithium ion conducting glass-ceramics in the system Li2S–P2S5. Solid State Ionics 2006, 177, 2721–2725.

[44]

Wenzel, S.; Weber, D. A.; Leichtweiss, T.; Busche, M. R.; Sann, J.; Janek, J. Interphase formation and degradation of charge transfer kinetics between a lithium metal anode and highly crystalline Li7P3S11 solid electrolyte. Solid State Ionics 2016, 286, 24–33.

[45]

Busche, M. R.; Weber, D. A.; Schneider, Y.; Dietrich, C.; Wenzel, S.; Leichtweiss, T.; Schröder, D.; Zhang, W. B.; Weigand, H.; Walter, D. et al. In situ monitoring of fast Li-ion conductor Li7P3S11 crystallization inside a hot-press setup. Chem. Mater. 2016, 28, 6152–6165.

[46]

Zhao, B.; Shi, Y. R.; Wu, J.; Xing, C.; Liu, Y. Q.; Ma, W. C.; Liu, X. Y.; Jiang, Y.; Zhang, J. J. Stabilizing Li7P3S11/lithium metal anode interface by in- situ bifunctional composite layer. Chem. Eng. J. 2022, 429, 132411.

[47]

Lu, Y.; Zhao, C. Z.; Yuan, H.; Cheng, X. B.; Huang, J. Q.; Zhang, Q. Critical current density in solid-state lithium metal batteries: Mechanism, influences, and strategies. Adv. Funct. Mater. 2021, 31, 2009925.

[48]

Put, B.; Vereecken, P. M.; Meersschaut, J.; Sepúlveda, A.; Stesmans, A. Electrical characterization of ultrathin RF-sputtered LiPON layers for nanoscale batteries. ACS Appl. Mater. Interfaces 2016, 8, 7060–7069.

[49]

Feng, W. L.; Hu, J. M.; Qian, G. N.; Xu, Z. M.; Zan, G. B.; Liu, Y. J.; Wang, F.; Wang, C. S.; Xia, Y. Y. Stabilization of garnet/Li interphase by diluting the electronic conductor. Sci. Adv. 2022, 8, eadd8972.

[50]

Yu, Z. J.; Zhang, X. Y.; Fu, C. K.; Wang, H.; Chen, M.; Yin, G. P.; Huo, H.; Wang, J. J. Dendrites in solid-state batteries: Ion transport behavior, advanced characterization, and interface regulation. Adv. Energy Mater. 2021, 11, 2003250.

[51]

Cui, C. Y.; Yang, C. Y.; Eidson, N.; Chen, J.; Han, F. D.; Chen, L.; Luo, C.; Wang, P. F.; Fan, X. L.; Wang, C. S. A highly reversible, dendrite-free lithium metal anode enabled by a lithium-fluoride-enriched interphase. Adv. Mater. 2020, 32, 1906427.

[52]

Sastre, J.; Futscher, M. H.; Pompizi, L.; Aribia, A.; Priebe, A.; Overbeck, J.; Stiefel, M.; Tiwari, A. N.; Romanyuk, Y. E. Blocking lithium dendrite growth in solid-state batteries with an ultrathin amorphous Li-La-Zr-O solid electrolyte. Commun. Mater. 2021, 2, 76.

[53]

Cao, D. X.; Sun, X.; Li, Q.; Natan, A.; Xiang, P. X.; Zhu, H. L. Lithium dendrite in all-solid-state batteries: Growth mechanisms, suppression strategies, and characterizations. Matter 2020, 3, 57–94.

[54]

Jin, Y. M.; He, Q. S.; Liu, G. Z.; Gu, Z.; Wu, M.; Sun, T. Y.; Zhang, Z. H.; Huang, L. F.; Yao, X. Y. Fluorinated Li10GeP2S12 enables stable all-solid-state lithium batteries. Adv. Mater. 2023, 35, 2211047.

[55]

Fan, X. L.; Chen, L.; Borodin, O.; Ji, X.; Chen, J.; Hou, S.; Deng, T.; Zheng, J.; Yang, C. Y.; Liou, S. C. et al. Non-flammable electrolyte enables Li-metal batteries with aggressive cathode chemistries. Nat. Nanotechnol. 2018, 13, 715–722.

[56]

Xu, H. H.; Li, Y. T.; Zhou, A. J.; Wu, N.; Xin, S.; Li, Z. Y.; Goodenough, J. B. Li3N-modified garnet electrolyte for all-solid-state lithium metal batteries operated at 40 °C. Nano Lett. 2018, 18, 7414–7418.

[57]

Yao, X. H.; Lu, X. K.; Zhou, Y. D.; Šamořil, T.; Bi, J. X.; Masteghin, M. G.; Zhang, H. X.; Askew, L.; Kim, J.; Xiong, F. Y. et al. Rectifying interphases for preventing Li dendrite propagation in solid-state electrolytes. Energy Environ. Sci. 2023, 16, 2167–2176.

[58]

Tian, H. K.; Liu, Z.; Ji, Y. Z.; Chen, L. Q.; Qi, Y. Interfacial electronic properties dictate Li dendrite growth in solid electrolytes. Chem. Mater. 2019, 31, 7351–7359.

[59]

Park, K.; Goodenough, J. B. Dendrite-suppressed lithium plating from a liquid electrolyte via wetting of Li3N. Adv. Energy Mater. 2017, 7, 1700732.

[60]

Raj, V.; Venturi, V.; Kankanallu, V. R.; Kuiri, B.; Viswanathan, V.; Aetukuri, N. P. B. Direct correlation between void formation and lithium dendrite growth in solid-state electrolytes with interlayers. Nat. Mater. 2022, 21, 1050–1056.

[61]

Lewis, J. A.; Cortes, F. J. Q.; Liu, Y.; Miers, J. C.; Verma, A.; Vishnugopi, B. S.; Tippens, J.; Prakash, D.; Marchese, T. S.; Han, S. Y. et al. Linking void and interphase evolution to electrochemistry in solid-state batteries using operando X-ray tomography. Nat. Mater. 2021, 20, 503–510.

[62]

Liang, Z. T.; Xiang, Y. X.; Wang, K. J.; Zhu, J. P.; Jin, Y. T.; Wang, H. C.; Zheng, B. Z.; Chen, Z. R.; Tao, M. M.; Liu, X. S. et al. Understanding the failure process of sulfide-based all-solid-state lithium batteries via operando nuclear magnetic resonance spectroscopy. Nat. Commun. 2023, 14, 259.

[63]

Otoyama, M.; Suyama, M.; Hotehama, C.; Kowada, H.; Takeda, Y.; Ito, K.; Sakuda, A.; Tatsumisago, M.; Hayashi, A. Visualization and control of chemically induced crack formation in all-solid-state lithium-metal batteries with sulfide electrolyte. ACS Appl. Mater. Interfaces 2021, 13, 5000–5007.

[64]

Ning, Z. Y.; Jolly, D. S.; Li, G. C.; De Meyere, R.; Pu, S. D.; Chen, Y.; Kasemchainan, J.; Ihli, J.; Gong, C.; Liu, B. Y. et al. Visualizing plating-induced cracking in lithium-anode solid-electrolyte cells. Nat. Mater. 2021, 20, 1121–1129.

[65]

Kasemchainan, J.; Zekoll, S.; Spencer Jolly, D.; Ning, Z. Y.; Hartley, G. O.; Marrow, J.; Bruce, P. G. Critical stripping current leads to dendrite formation on plating in lithium anode solid electrolyte cells. Nat. Mater. 2019, 18, 1105–1111.

[66]

Zhu, J. F.; Chen, J.; Luo, Y.; Sun, S. Q.; Qin, L. G.; Xu, H.; Zhang, P. G.; Zhang, W.; Tian, W. B.; Sun, Z. M. Lithiophilic metallic nitrides modified nickel foam by plasma for stable lithium metal anode. Energy Storage Mater. 2019, 23, 539–546.

[67]
Yang, J.; Shang, J.; Liu, Q. R.; Yang, X. Y.; Tan, Y. F.; Zhao, Y.; Liu, C. G.; Tang, Y. B. Variant-localized high-concentration electrolyte without phase separation for low-temperature batteries. Angew. Chem., Int. Ed., in press, DOI: 10.1002/anie.202406182.
[68]

Zhang, Y. Q.; Gao, H. C.; Wang, J. S.; Chi, Q. G.; Zhang, T. D.; Zhang, C. H.; Feng, Y.; Zhang, Y.; Cao, D. X.; Zhu, K. PEO/Li1.25Al0.25Zr1.75(PO4)3 composite solid electrolytes for high-rate and ultra-stable all-solid-state lithium metal batteries with impregnated cathode modification. Inorg. Chem. Front. 2024, 11, 1289–1300.

[69]

Swamy, T.; Chen, X. W.; Chiang, Y. M. Electrochemical redox behavior of Li ion conducting sulfide solid electrolytes. Chem. Mater. 2019, 31, 707–713.

[70]

Taklu, B. W.; Su, W. N.; Nikodimos, Y.; Lakshmanan, K.; Temesgen, N. T.; Lin, P. X.; Jiang, S. K.; Huang, C. J.; Wang, D. Y.; Sheu, H. S. et al. Dual CuCl doped argyrodite superconductor to boost the interfacial compatibility and air stability for all solid-state lithium metal batteries. Nano Energy 2021, 90, 106542.

[71]

Wang, Y. Q.; Lü, X. J.; Zheng, C.; Liu, X.; Chen, Z. H.; Yang, W. G.; Lin, J. H.; Huang, F. Q. Chemistry design towards a stable sulfide-based superionic conductor Li4Cu8Ge3S12. Angew. Chem., Int. Ed. 2019, 58, 7673–7677.

[72]

Xu, R. C.; Han, F. D.; Ji, X.; Fan, X. L.; Tu, J. P.; Wang, C. S. Interface engineering of sulfide electrolytes for all-solid-state lithium batteries. Nano Energy 2018, 53, 958–966.

[73]

Zhao, F. P.; Alahakoon, S. H.; Adair, K.; Zhang, S. M.; Xia, W.; Li, W. H.; Yu, C.; Feng, R. F.; Hu, Y. F.; Liang, J. W. et al. An air-stable and Li-metal-compatible glass-ceramic electrolyte enabling high-performance all-solid-state Li metal batteries. Adv. Mater. 2021, 33, 2006577.

[74]

Zhao, F. P.; Liang, J. W.; Yu, C.; Sun, Q.; Li, X. N.; Adair, K.; Wang, C. H.; Zhao, Y.; Zhang, S. M.; Li, W. H. et al. A versatile Sn-substituted argyrodite sulfide electrolyte for all-solid-state Li metal batteries. Adv. Energy Mater. 2020, 10, 1903422.

[75]

Liu, Y.; Su, H.; Zhong, Y.; Wang, X. L.; Xia, X. H.; Gu, C. D.; Tu, J. P. Revealing the impact of Cl substitution on the crystallization behavior and interfacial stability of superionic lithium argyrodites. Adv. Funct. Mater. 2022, 32, 2207978.

Nano Research
Pages 9640-9650
Cite this article:
Fan C, Ahmad N, Song T, et al. Electrolyte design for Li-conductive solid-electrolyte interphase enabling benchmark performance for all-solid-state lithium-metal batteries. Nano Research, 2024, 17(11): 9640-9650. https://doi.org/10.1007/s12274-024-6871-3
Topics:

620

Views

3

Crossref

4

Web of Science

4

Scopus

0

CSCD

Altmetrics

Received: 24 April 2024
Revised: 14 June 2024
Accepted: 08 July 2024
Published: 03 August 2024
© Tsinghua University Press 2024
Return