AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Dinitride-free Li plating/stripping via lithiophilic seeds in a 3D matrix for enhanced Li-metal battery stability

Jingjing Liu1,2( )Aiguo Jia1Chun Qin1Junming Chao1Yong Li2Yuqing Li3Shengyu Wang1Xiaotian Guo2Huan Pang2( )
School of Mechanical Engineering, Yangzhou University, Yangzhou 225127, China
School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225009, China
Testing Center, Yangzhou University, Yangzhou 225127, China
Show Author Information

Graphical Abstract

A three-dimensional (3D) CuZn framework seeded with lithiophilic ZnO nano seeds (ZnO NS@3D CuZn) in pores and tunnels was successfully synthesized. As a result, the Li||LiFePO4 (LFP) ZnO NS@3D CuZn half-cell achieved long life of near 350 cycles at 0.5 mA·cm−2 and the Li@ZnO NS@3D CuZn||LFP full cell demonstrates superb cycling retention of 90.1% after 600 cycles.

Abstract

The uncontrolled dendrite growth and volume change of Li metal during cycling lead to a short cycle life and safety concerns for Li-metal batteries, which hinders their practical application. Herein, we report the facile and energy-saving production of a three-dimensional (3D) CuZn matrix decorated with in-situ formed ZnO nano seeds (ZnO NS@3D CuZn) in pores and tunnels, which can serve as an anode current collector for dendrite-free Li-metal batteries. The 3D porous framework reduced the anode current density and accommodated Li volume change during the charge/discharge process. More importantly, the lithiophilic ZnO nano seeds induced fast Li deposition into the pores and tunnels of the 3D structure to effectively confine the deposited Li. As a positive effect, the volume change and Li dendrite growth during cycling are greatly suppressed. The half-cell with the ZnO NS@3D CuZn current collector exhibited a Coulombic efficiency (CE) of above 98% for over 320 and 240 cycles at 0.5 and 1 mA·cm−2, respectively. The Li@ZnO NS@3D CuZn symmetric cell achieves a lifespan of over 1500 h. Moreover, the Li@ZnO NS@3D CuZn||LiFePO4 full cell achieves a superb average CE of 99.4% and a long life of 600 cycles before the capacity retention rate decays to 90%.

Electronic Supplementary Material

Download File(s)
6864_ESM.pdf (6.5 MB)

References

[1]

Kim, S.; Park, G.; Lee, S. J.; Seo, S.; Ryu, K.; Kim, C. H.; Choi, J. W. Lithium-metal batteries: From fundamental research to industrialization. Adv. Mater. 2023, 35, 2206625.

[2]

Xie, Y. X.; Huang, Y. X.; Chen, H.; Lin, W. R.; Wu, T. R.; Wang, Y. Q.; Liu, S. S.; Sun, M. L.; Huang, H. Y.; Dai, P. et al. Dual-protective role of PM475: Bolstering anode and cathode stability in lithium metal batteries. Adv. Funct. Mater. 2024, 34, 2310867.

[3]

Matsuda, S.; Ono, M.; Myojin, A. Irreversible structural changes in lithium electrodes accelerate capacity fading in lithium-metal-based rechargeable batteries. ACS Appl. Energy Mater. 2023, 6, 2524–2530.

[4]

Zhang, D.; Gu, R.; Yang, Y. X.; Ge, J. Q.; Xu, J. T.; Xu, Q. J.; Shi, P. H.; Liu, M. X.; Guo, Z. P.; Min, Y. L. Sulfonyl molecules induced oriented lithium deposition for long-term lithium metal batteries. Angew. Chem., Int. Ed. 2024, 63, e202315122.

[5]

Zhai, P. B.; Liu, L. X.; Gu, X. K.; Wang, T. S.; Gong, Y. J. Interface engineering for lithium metal anodes in liquid electrolyte. Adv. Energy Mater. 2020, 10, 2001257.

[6]

Chen, T.; Meng, F. B.; Zhang, Z. W.; Liang, J. C.; Hu, Y.; Kong, W. H.; Zhang, X. L.; Jin, Z. Stabilizing lithium metal anode by molecular beam epitaxy grown uniform and ultrathin bismuth film. Nano Energy 2020, 76, 105068.

[7]

Wang, J. C.; Chen, L. Q.; Li, H.; Wu, F. Anode interfacial issues in solid-state Li batteries: Mechanistic understanding and mitigating strategies. Energy Environ. Mater. 2023, 6, e12613.

[8]

Liu, J. D.; Li, X.; Huang, J. D.; Yang, G. J.; Ma, J. M. Additive-guided solvation-regulated flame-retardant electrolyte enables high-voltage lithium metal batteries with robust electrode electrolyte interphases. Adv. Funct. Mater. 2024, 34, 2312762.

[9]

Wen, Z. X.; Fang, W. Q.; Wang, F. L.; Kang, H.; Zhao, S. Q.; Guo, S. J.; Chen, G. Dual-salt electrolyte additive enables high moisture tolerance and favorable electric double layer for lithium metal battery. Angew. Chem., Int. Ed. 2024, e202314876.

[10]

Dong, L. W.; Liu, Y. P.; Chen, D. J.; Han, Y. P.; Ji, Y. P.; Liu, J. P.; Yuan, B. T.; Dong, Y. F.; Li, Q.; Zhou, S. Y. et al. Stabilization of high-voltage lithium metal batteries using a sulfone-based electrolyte with bi-electrode affinity and LiSO2F-rich interphases. Energy Storage Mater. 2022, 44, 527–536.

[11]

Zheng, S.; Bi, S.; Fu, Y. B.; Wu, Y.; Liu, M. H.; Xu, Q.; Zeng, G. F. 3D crown ether covalent organic framework as interphase layer toward high-performance lithium metal batteries. Adv. Mater. 2024, 36, 2313076.

[12]

Peng, H. J.; Huang, J. Q.; Cheng, X. B.; Zhang, Q. Review on high-loading and high-energy lithium-sulfur batteries. Adv. Energy Mater. 2017, 7, 1700260.

[13]

Hu, X. J.; Zheng, Y. P.; Li, Z. W.; Xia, C. F.; Chua, D. H. C.; Hu, X.; Liu, T.; Liu, X. B.; Wu, Z. P.; Xia, B. Y. Artificial LiF-rich interface enabled by in situ electrochemical fluorination for stable lithium-metal batteries. Angew. Chem., Int. Ed. 2024, 63, e202319600.

[14]

Yan, T. G.; Li, F.; Xu, C. Y.; Fang, H. T. Highly uniform lithiated nafion thin coating on separator as an artificial SEI layer of lithium metal anode toward suppressed dendrite growth. Electrochim. Acta 2022, 410, 140004.

[15]

Liu, W.; Liu, P. C.; Mitlin, D. Review of emerging concepts in SEI analysis and artificial SEI membranes for lithium, sodium, and potassium metal battery anodes. Adv. Energy Mater. 2020, 10, 2002297.

[16]

He, F.; Tang, W. J.; Zhang, X. Y.; Deng, L. J.; Luo, J. Y. High energy density solid state lithium metal batteries enabled by sub-5 µm solid polymer electrolytes. Adv. Mater. 2021, 33, 2105329.

[17]

Wang, C. H.; Liang, J. W.; Luo, J.; Liu, J.; Li, X. N.; Zhao, F. P.; Li, R. Y.; Huang, H.; Zhao, S. Q.; Zhang, L. et al. A universal wet-chemistry synthesis of solid-state halide electrolytes for all-solid-state lithium-metal batteries. Sci. Adv. 2021, 7, eabh1896.

[18]

Zheng, Y.; Yang, N.; Gao, R.; Li, Z. Q.; Dou, H. Z.; Li, G. R.; Qian, L. T.; Deng, Y. P.; Liang, J. Q.; Yang, L. X. et al. “Tree-trunk” design for flexible quasi-solid-state electrolytes with hierarchical ion-channels enabling ultralong-life lithium-metal batteries. Adv. Mater. 2022, 34, 2203417.

[19]

Li, D. X.; Ouyang, Y.; Xiao, Y. B.; Xie, Y. F.; Zeng, Q. H.; Yu, S. T.; Zheng, C.; Zhang, Q.; Huang, S. M. Core–shell structured flame-retardant separator mediated with metal-organic framework armor enables self-acceleration mechanism for dendrite-free and safer lithium metal batteries. Adv. Funct. Mater. 2024, 34, 2314296.

[20]

Tang, W. M.; Zhao, T.; Wang, K.; Yu, T. Y.; Lv, R. X.; Li, L.; Wu, F.; Chen, R. J. Dendrite-free lithium metal batteries enabled by coordination chemistry in polymer-ceramic modified separators. Adv. Funct. Mater. 2024, 34, 2314045.

[21]

Zhou, K. J.; Wang, Y.; Mei, J. B.; Zhang, X.; Xue, T. T.; Fan, W.; Zhang, L. S.; Liu, T. X.; Xie, Y. Scalable preparation of polyimide sandwiched separator for durable high-rate lithium-metal battery. Small 2024, 20, 2305596.

[22]

Liu, Q. T.; Liu, R. L.; Cui, Y.; Zhou, M. H.; Zeng, J. K.; Zheng, B. N.; Liu, S. H.; Zhu, Y. L.; Wu, D. C. Dendrite-free and long-cycling lithium metal battery enabled by ultrathin, 2D shield-defensive, and single lithium-ion conducting polymeric membrane. Adv. Mater. 2022, 34, 2108437.

[23]

Li, X.; Yuan, L. X.; Liu, D. Z.; Liao, M. Y.; Chen, J.; Yuan, K.; Xiang, J. W.; Li, Z.; Huang, Y. H. Elevated lithium ion regulation by a “natural silk” modified separator for high-performance lithium metal anode. Adv. Funct. Mater. 2021, 31, 2100537.

[24]

Jin, C. B.; Sheng, O. W.; Luo, J. M.; Yuan, H. D.; Fang, C.; Zhang, W. K.; Huang, H.; Gan, Y. P.; Xia, Y.; Liang, C. et al. 3D lithium metal embedded within lithiophilic porous matrix for stable lithium metal batteries. Nano Energy 2017, 37, 177–186.

[25]

Zhang, G. H.; Yu, H. H.; Li, D.; Yan, Y.; Wei, D. H.; Ye, J. H.; Zhao, Y. L.; Zeng, W.; Duan, H. G. Ultrathin lithiophilic 3D arrayed skeleton enabling spatial-selection deposition for dendrite-free lithium anodes. Small 2023, 19, 2300734.

[26]

Yang, C. P.; Yin, Y. X.; Zhang, S. F.; Li, N. W.; Guo, Y. Accommodating lithium into 3D current collectors with a submicron skeleton towards long-life lithium metal anodes. Nat. Commun. 2015, 6, 8058.

[27]

Wang, C. W.; Gong, Y. H.; Liu, B. Y.; Fu, K.; Yao, Y. G.; Hitz, E.; Li, Y. J.; Dai, J. Q.; Xu, S. M.; Luo, W. et al. Conformal, nanoscale ZnO surface modification of garnet-based solid-state electrolyte for lithium metal anodes. Nano Lett. 2017, 17, 565–571.

[28]

Tan, J.; Soto, F. A.; Noh, J.; Wu, P.; Yadav, D. R.; Xie, K.; Balbuena, P. B.; Yu, C. Large areal capacity and dendrite-free anodes with long lifetime enabled by distributed lithium plating with mossy manganese oxides. J. Mater. Chem. A 2021, 9, 9291–9300.

[29]

Fan, Y. C.; Li, H. J.; He, X.; Huang, Y. T.; Sun, C. H.; Zhu, T. M.; Liu, H. Y.; Huangzhang, E. C.; Sun, F.; Nan, J. M. In situ grown MnO2 nanoflower arrays on Ni foam (MnO2@NF) as 3D lithiophilic hosts for a stable lithium metal anode. ACS Appl. Energy Mater. 2022, 5, 10034–10044.

[30]

Wang, L. P.; Zhang, L.; Wang, Q. J.; Li, W. J.; Wu, B.; Jia, W. S.; Wang, Y. H.; Li, J. Z.; Li, H. Long lifespan lithium metal anodes enabled by Al2O3 sputter coating. Energy Storage Mater. 2018, 10, 16–23.

[31]

Fan, L.; Li, S. Y.; Liu, L.; Zhang, W. D.; Gao, L. N.; Fu, Y.; Chen, F.; Li, J.; Zhuang, H. L.; Lu, Y. Y. Enabling stable lithium metal anode via 3D inorganic skeleton with superlithiophilic interphase. Adv. Energy Mater. 2018, 8, 1802350.

[32]

Huang, C. Y.; Zhang, Z. L.; Zhou, Y. Z.; Chen, Y. Z.; Wen, S. F.; Wang, F.; Liu, Y. Stannic oxide quantum dots constructed evenly alloyable layer stabilizing lithium metal batteries. J. Alloys Compd. 2023, 955, 170230.

[33]

Kang, R. K.; Du, Y. Q.; Zhou, W.; Zhang, D. M.; Sun, C. Y.; Wang, H.; Chen, G. W.; Zhang, J. X. Highly stable lithium metal anode enabled by constructing lithiophilic 3D interphase on robust framework. Chem. Eng. J. 2023, 454, 140468.

[34]

Liu, S. F.; Xia, X. H.; Yao, Z. J.; Wu, J. B.; Zhang, L. Y.; Deng, S. J.; Zhou, C. G.; Shen, S. H.; Wang, X. L.; Tu, J. P. Straw-brick-like carbon fiber cloth/lithium composite electrode as an advanced lithium metal anode. Small Methods 2018, 2, 1800035.

[35]

Huang, S. B.; Zhang, W. F.; Ming, H.; Cao, G. P.; Fan, L. Z.; Zhang, H. Chemical energy release driven lithiophilic layer on 1 m2 commercial brass mesh toward highly stable lithium metal batteries. Nano Lett. 2019, 19, 1832–1837.

[36]

Wang, L. T.; Yu, Z. J.; Zhong, Y. L.; Wen, Z. R.; Tang, Y. X.; Hong, G. Controllable and homogeneous lithium electrodeposition via lithiophilic anchor points. J. Phys. Chem. Lett. 2022, 13, 5977–5985.

[37]

Song, H.; Suh, S.; Park, H.; Jang, D.; Kim, J.; Kim, H. J. Synthesis of pompon-like ZnO microspheres as host materials and the catalytic effects of nonconductive metal oxides for lithium-sulfur batteries. J. Ind. Eng. Chem. 2021, 99, 309–316.

[38]

Yu, Y.; Li, P.; Wang, T. Y.; Tan, Q. W.; Shi, J.; Wan, Q.; Qu, X. H. Self-assembled three-dimensional flower-like ZnO encased by carbon toward stable lithium metal anode. Ionics 2023, 29, 3981–3990.

[39]

Xia, T. L.; Wang, Y. Q.; Mai, C. K.; Pan, G. X.; Zhang, L.; Zhao, W. W.; Zhang, J. H. Facile in situ growth of ZnO nanosheets standing on Ni foam as binder-free anodes for lithium ion batteries. RSC Adv. 2019, 9, 19253–19260.

[40]

Shi, L.; Fu, X. X.; Fan, C. Y.; Yu, S. Q.; Qian, G. D.; Wang, Z. Y. Carbonate-assisted hydrothermal synthesis of porous, hierarchical CuO microspheres and CuO/GO for high-performance lithium-ion battery anodes. RSC Adv. 2015, 5, 85179–85186.

[41]

Li, Z. M.; Xu, Y. L.; Chen, Y.; Zhang, W.; Li, K. Q.; Zhang, H. In situ fabrication of hierarchical CuO@Cu microspheres composed of nanosheets as high-performance anode materials for lithium-ion batteries. ChemistrySelect 2019, 4, 13569–13575.

[42]

Liu, Q.; Zheng, G. X.; Yin, J. H.; Song, M. X.; Wang, Y.; Tian, S. Y.; Zhang, F. Q. A flower-shape NiO/Co3O4 composite as anode for lithium ion battery prepared by a template-free hydrothermal method. Int. J. Electrochem. Sci. 2020, 15, 11522–11530.

[43]

Chandramouli, K.; Suryanarayana, B.; Babu, T. A.; Raghavendra, V.; Parajuli, D.; Murali, N.; Malapati, V.; Mammo, T. W.; Shanmukhi, P. S. V.; Gudla, U. R. Synthesis, structural and antibacterial activity of pure, Fe doped, and glucose capped ZnO nano particles. Surf. Interfaces 2021, 26, 101327.

[44]

Cheng, X. B.; Zhang, R.; Zhao, C. Z.; Wei, F.; Zhang, J. G.; Zhang, Q. A review of solid electrolyte interphases on lithium metal anode. Adv. Sci. 2016, 3, 1500213.

[45]

Sun, Y. M.; Liu, N.; Cui, Y. Promises and challenges of nanomaterials for lithium-based rechargeable batteries. Nat. Energy 2016, 1, 16071.

[46]

Cheng, X. B.; Zhang, R.; Zhao, C. Z.; Zhang, Q. Toward safe lithium metal anode in rechargeable batteries: A review. Chem. Rev. 2017, 117, 10403–10473.

[47]

Li, Z. Z.; Peng, M. Q.; Zhou, X. L.; Shin, K.; Tunmee, S.; Zhang, X. M.; Xie, C. D.; Saitoh, H.; Zheng, Y. P.; Zhou, Z. M. et al. In situ chemical lithiation transforms diamond-like carbon into an ultrastrong ion conductor for dendrite-free lithium-metal anodes. Adv. Mater. 2021, 33, 2100793.

[48]

Park, J. B.; Choi, C. H.; Yu, S.; Chung, K. Y.; Kim, D. W. Porous lithiophilic Li–Si alloy-type interfacial framework via self-discharge mechanism for stable lithium metal anode with superior rate. Adv. Energy Mater. 2021, 11, 2101544.

Nano Research
Pages 8163-8173
Cite this article:
Liu J, Jia A, Qin C, et al. Dinitride-free Li plating/stripping via lithiophilic seeds in a 3D matrix for enhanced Li-metal battery stability. Nano Research, 2024, 17(9): 8163-8173. https://doi.org/10.1007/s12274-024-6864-2
Topics:

287

Views

0

Crossref

0

Web of Science

0

Scopus

0

CSCD

Altmetrics

Received: 16 May 2024
Revised: 03 July 2024
Accepted: 03 July 2024
Published: 25 July 2024
© Tsinghua University Press 2024
Return