Discover the SciOpen Platform and Achieve Your Research Goals with Ease.
Search articles, authors, keywords, DOl and etc.
Biofilm-associated bacterial infection brings serious threats to global public health owing to serious antibiotic resistance. It is urgently needed to develop innovative strategies to combat biofilm-associated bacterial infections. Polymyxins stand out as the last line of defense against Gram-negative bacteria. However, serious nephrotoxicity of polymyxins severely limits their clinical utility. Herein, a hypoxia-responsive liposome is designed as the nanocarrier of polymyxin B (PMB) to combat biofilms developed by Gram-negative bacteria. A metronidazole modified lipid (hypoxia-responsive lipid (HRLipid)) is synthesized to fabricate hypoxia-responsive liposomes (HRLip). PMB loaded hypoxia-responsive liposomes (HRL-PMB) is then prepared to mitigate the nephrotoxicity of PMB while preserving its excellent bactericidal activity. HRL-PMB shows very low hemolysis and cytotoxicity due to liposomal encapsulation of PMB. PMB can be readily released from HRL-PMB in response to hypoxic biofilm microenvironment, exerting its bactericidal activity to realize biofilm eradication. The excellent in vivo antibiofilm ability of HRL-PMB is confirmed by a Pseudomonas aeruginosa infected zebrafish model and a P. aeruginosa pneumonia infection model. Meanwhile, HRL-PMB can greatly reduce the nephrotoxicity of PMB after intravenous injection. The hypoxia-sensitive liposomes held great promise to improve the biosafety of highly toxic antibiotics while preserving their intrinsic bactericidal ability, which may provide an innovative strategy for combating biofilm-associated infections.
Hall-Stoodley, L.; Costerton, J. W.; Stoodley, P. Bacterial biofilms: From the natural environment to infectious diseases. Nat. Rev. Microbiol. 2004, 2, 95–108.
Nadell, C. D.; Xavier, J. B.; Foster, K. R. The sociobiology of biofilms. FEMS Microbiol. Rev. 2009, 33, 206–224.
Chua, S. L.; Yam, J. K. H.; Hao, P. L.; Adav, S. S.; Salido, M. M.; Liu, Y.; Givskov, M.; Sze, S. K.; Tolker-Nielsen, T.; Yang, L. Selective labelling and eradication of antibiotic-tolerant bacterial populations in Pseudomonas aeruginosa biofilms. Nat. Commun. 2016, 7, 10750.
Flemming, H. C.; Wingender, J. The biofilm matrix. Nat. Rev. Microbiol. 2010, 8, 623–633.
Olsen, I. Biofilm-specific antibiotic tolerance and resistance. Eur. J. Clin. Microbiol. Infect. Dis. 2015, 34, 877–886.
Zou, L. Y.; Hu, D. F.; Wang, F. J.; Jin, Q.; Ji, J. The relief of hypoxic microenvironment using an O2 self-sufficient fluorinated nanoplatform for enhanced photodynamic eradication of bacterial biofilms. Nano Res. 2022, 15, 1636–1644.
Guo, N.; Xia, Y.; Duan, Y. X.; Wu, Q. X.; Xiao, L.; Shi, Y. X.; Yang, B.; Liu, Y. Self-enhanced photothermal-chemodynamic antibacterial agents for synergistic anti-infective therapy. Chin. Chem. Lett. 2023, 34, 107542.
Chen, S. H.; Zhang, Z. S.; Wei, L.; Fan, Z. X.; Li, Y.; Wang, X. Z.; Feng, T. M.; Huang, H. Y. Photo-catalytic Staphylococcus aureus inactivation and biofilm destruction with novel bis-tridentate iridium(III) photocatalyst. Chin. Chem. Lett. 2023, 34, 108412.
Zhang, H. X.; Zou, Y.; Lu, K. Y.; Wu, Y.; Lin, Y. C.; Cheng, J. J.; Liu, C. X.; Chen, H.; Zhang, Y. X.; Yu, Q. A nanoplatform with oxygen self-supplying and heat-sensitizing capabilities enhances the efficacy of photodynamic therapy in eradicating multidrug-resistant biofilms. J. Mater. Sci. Technol. 2024, 169, 209–219.
Zou, Y.; Zhang, H. X.; Zhang, Y. H.; Wu, Y.; Cheng, J. J.; Jia, D. X.; Liu, C. X.; Chen, H.; Zhang, Y. X.; Yu, Q. A near-infrared light-triggered nano-domino system for efficient biofilm eradication: Activation of dispersing and killing functions by generating nitric oxide and peroxynitrite via cascade reactions. Acta Biomater. 2023, 170, 389–400.
Cheng, J. J.; Zhang, H. X.; Lu, K. Y.; Zou, Y.; Jia, D. X.; Yang, H.; Chen, H.; Zhang, Y. X.; Yu, Q. Bi-functional quercetin/copper nanoparticles integrating bactericidal and anti-quorum sensing properties for preventing the formation of biofilms. Biomater. Sci. 2024, 12, 1788–1800.
Huang, Y.; Gao, Q.; Li, X.; Gao, Y. F.; Han, H. J.; Jin, Q.; Yao, K.; Ji, J. Ofloxacin loaded MoS2 nanoflakes for synergistic mild-temperature photothermal/antibiotic therapy with reduced drug resistance of bacteria. Nano Res. 2020, 13, 2340–2350.
Huang, Y.; Chen, Y. C.; Lu, Z. Y.; Yu, B.; Zou, L. Y.; Song, X. H.; Han, H. J.; Jin, Q.; Ji, J. Facile synthesis of self-targeted Zn2+-gallic acid nanoflowers for specific adhesion and elimination of gram-positive bacteria. Small 2023, 19, 2302578.
Ma, X. J.; Tang, W. J.; Yang, R. Bioinspired nanomaterials for the treatment of bacterial infections. Nano Res. 2024, 17, 691–714.
Yang, Z. R.; Xiong, J. Y.; Wei, S. R.; Du, K. H.; Qin, H. M.; Ma, T.; Lv, N. N.; Yu, X. Y.; Jiang, H.; Zhu, J. T. Metalloprotein-inspired supramolecular photodynamic nanodrugs by multicomponent coordination for deep penetration and enhanced biofilm eradication. Nano Res. 2023, 16, 7312–7322.
Chai, M.Y.; Gao, Y. F.; Liu, J.; Deng, Y. Y.; Hu, D. F.; Jin, Q.; Ji, J. Polymyxin B-polysaccharide polyion nanocomplex with improved biocompatibility and unaffected antibacterial activity for acute lung infection management. Adv. Healthcare Mater. 2020, 9, 1901542.
Mohapatra, S. S.; Dwibedy, S. K.; Padhy, I. Polymyxins, the last-resort antibiotics: Mode of action, resistance emergence, and potential solutions. J. Biosci. 2021, 46, 85.
Zavascki, A. P.; Goldani, L. Z.; Li, J.; Nation, R. L. Polymyxin B for the treatment of multidrug-resistant pathogens: A critical review. J. Antimicrob. Chemother. 2007, 60, 1206–1215.
Dong, H. H.; Xiang, Q. J.; Gu, Y. H.; Wang, Z. S.; Paterson, N. G.; Stansfeld, P. J.; He, C.; Zhang, Y. Z.; Wang, W. J.; Dong, C. J. Structural basis for outer membrane lipopolysaccharide insertion. Nature 2014, 511, 52–56.
Nang, S. C.; Azad, M. A. K.; Velkov, T.; Zhou, Q.; Li, J. Rescuing the last-line polymyxins: Achievements and challenges. Pharmacol. Rev. 2021, 73, 679–728.
Justo, J. A.; Bosso, J. A. Adverse reactions associated with systemic polymyxin therapy. Pharmacotherapy 2015, 35, 28–33.
Kelesidis, T.; Falagas, M. E. The safety of polymyxin antibiotics. Expert Opin. Drug Saf. 2015, 14, 1687–1701.
Velkov, T.; Dai, C. S.; Ciccotosto, G. D.; Cappai, R.; Hoyer, D.; Li, J. Polymyxins for CNS infections: Pharmacology and neurotoxicity. Pharmacol. Ther. 2018, 181, 85–90.
Yun, B.; Azad, M. A. K.; Wang, J.; Nation, R. L.; Thompson, P. E.; Roberts, K. D.; Velkov, T.; Li, J. Imaging the distribution of polymyxins in the kidney. J. Antimicrob. Chemother. 2015, 70, 827–829.
Jasim, R.; Schneider, E. K.; Han, M. L.; Azad, M. A. K.; Hussein, M.; Nowell, C.; Baker, M. A.; Wang, J. P.; Li, J.; Velkov, T. A fresh shine on cystic fibrosis inhalation therapy: Antimicrobial synergy of polymyxin b in combination with silver nanoparticles. J. Biomed. Nanotechnol. 2017, 13, 447–457.
Lakshminarayanan, R.; Ye, E. Y.; Young, D. J.; Li, Z. B.; Loh, X. J. Recent advances in the development of antimicrobial nanoparticles for combating resistant pathogens. Adv. Healthcare Mater. 2018, 7, 1701400.
Insua, I.; Majok, S.; Peacock, A. F. A.; Krachler, A. M.; Fernandez-Trillo, F. Preparation and antimicrobial evaluation of polyion complex (PIC) nanoparticles loaded with polymyxin B. Eur. Polym. J. 2017, 87, 478–486.
Insua, I.; Zizmare, L.; Peacock, A. F. A.; Krachler, A. M.; Fernandez-Trillo, F. Polymyxin B containing polyion complex (PIC) nanoparticles: Improving the antimicrobial activity by tailoring the degree of polymerisation of the inert component. Sci. Rep. 2017, 7, 9396.
Obuobi, S.; Voo, Z. X.; Low, M. W.; Czarny, B.; Selvarajan, V.; Ibrahim, N. L.; Yang, Y. Y.; Ee, P. L. R. Phenylboronic acid functionalized polycarbonate hydrogels for controlled release of polymyxin B in Pseudomonas aeruginosa infected burn wounds. Adv. Healthcare Mater. 2018, 7, 1701388.
Rumbaugh, K. P.; Sauer, K. Biofilm dispersion. Nat. Rev. Microbiol. 2020, 18, 571–586.
Flemming, H. C.; Wingender, J.; Szewzyk, U.; Steinberg, P.; Rice, S. A.; Kjelleberg, S. Biofilms: An emergent form of bacterial life. Nat. Rev. Microbiol. 2016, 14, 563–575.
Wilton, M.; Charron-Mazenod, L.; Moore, R.; Lewenza, S. Extracellular DNA acidifies biofilms and induces aminoglycoside resistance in Pseudomonas aeruginosa. Antimicrob. Agents Chemother. 2015, 60, 544–553.
Schlafer, S.; Baelum, V.; Dige, I. Improved pH-ratiometry for the three-dimensional mapping of pH microenvironments in biofilms under flow conditions. J. Microbiol. Methods 2018, 152, 194–200.
Hu, Y. L.; Ruan, X. H.; Lv, X. Y.; Xu, Y.; Wang, W. J.; Cai, Y.; Ding, M.; Dong, H.; Shao, J. J.; Yang, D. L. et al. Biofilm microenvironment-responsive nanoparticles for the treatment of bacterial infection. Nano Today 2022, 46, 101602.
Gao, Y. F.; Wang, J.; Chai, M. Y.; Li, X.; Deng, Y. Y.; Jin, Q.; Ji, J. Size and charge adaptive clustered nanoparticles targeting the biofilm microenvironment for chronic lung infection management. ACS Nano 2020, 14, 5686–5699.
Chen, Y. C.; Huang, Y.; Jin, Q. Polymeric nanoplatforms for the delivery of antibacterial agents. Macromol. Chem. Phys. 2022, 223, 2100440.
Chen, Y. C.; Gao, Y. F.; Huang, Y.; Jin, Q.; Ji, J. Inhibiting quorum sensing by active targeted pH-sensitive nanoparticles for enhanced antibiotic therapy of biofilm-associated bacterial infections. ACS Nano 2023, 17, 10019–10032.
Hu, D. F.; Deng, Y. Y.; Jia, F.; Jin, Q.; Ji, J. Surface charge switchable supramolecular nanocarriers for nitric oxide synergistic photodynamic eradication of biofilms. ACS Nano 2020, 14, 347–359.
Xiu, W.; Wan, L.; Yang, K. L.; Li, X.; Yuwen, L. H.; Dong, H.; Mou, Y. B.; Yang, D. L.; Wang, L. H. Potentiating hypoxic microenvironment for antibiotic activation by photodynamic therapy to combat bacterial biofilm infections. Nat. Commun. 2022, 13, 3875.
Liu, H. M.; Xie, Y. D.; Zhang, Y. F.; Cai, Y. F.; Li, B. Y.; Mao, H. L.; Liu, Y. G.; Lu, J.; Zhang, L. Z.; Yu, R. T. Development of a hypoxia-triggered and hypoxic radiosensitized liposome as a doxorubicin carrier to promote synergetic chemo-/radio-therapy for glioma. Biomaterials 2017, 121, 130–143.
Felgner, P. L.; Gadek, T. R.; Holm, M.; Roman, R.; Chan, H. W.; Wenz, M.; Northrop, J. P.; Ringold, G. M.; Danielsen, M. Lipofection: A highly efficient, lipid-mediated DNA-transfection procedure. Proc. Natl. Acad. Sci. USA 1987, 84, 7413–7417.
Watson, D.; Macdermot, J.; Wilson, R.; Cole, P. J.; Taylor, G. W. Purification and structural analysis of pyocyanin and 1-hydroxyphenazine. Eur. J. Biochem. 1986, 159, 309–313.
Haffter, P.; Granato, M.; Brand, M.; Mullins, M. C.; Hammerschmidt, M.; Kane, D. A.; Odenthal, J.; Van Eeden, F. J. M.; Jiang, Y. J.; Heisenberg, C. P. et al. The identification of genes with unique and essential functions in the development of the zebrafish, Danio rerio. Development 1996, 123, 1–36.
Díaz-Pascual, F.; Ortíz-Severín, J.; Varas, M. A.; Allende, M. L.; Chávez, F. P. In vivo host–pathogen interaction as revealed by global proteomic profiling of zebrafish larvae. Front. Cell. Infect. Microbiol. 2017, 7, 334.
Nogaret, P.; El Garah, F.; Blanc-Potard, A. B. A novel infection protocol in zebrafish embryo to assess Pseudomonas aeruginosa virulence and validate efficacy of a quorum sensing inhibitor in vivo. Pathogens 2021, 10, 401.
Herbomel, P.; Thisse, B.; Thisse, C. Ontogeny and behaviour of early macrophages in the zebrafish embryo. Development 1999, 126, 3735–3745.
Hu, D. F.; Zou, L. Y.; Yu, W. J.; Jia, F.; Han, H. J.; Yao, K.; Jin, Q.; Ji, J. Relief of biofilm hypoxia using an oxygen nanocarrier: A new paradigm for enhanced antibiotic therapy. Adv. Sci. 2020, 7, 2000398.
Kellum, J. A.; Romagnani, P.; Ashuntantang, G.; Ronco, C.; Zarbock, A.; Anders, H. J. Acute kidney injury. Nat. Rev. Dis. Primers 2021, 7, 52.