AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article | Online First

Observation of the failure mechanism in Ag10Ge15Te75-based memristor induced by ion transport

Yuwei Xiong1,§Kuibo Yin1,§( )Weiwei Sun1Jingcang Li1Shangyang Shang2Lei Xin1Qiyun Wu1Xiaoran Gong1Yidong Xia2Litao Sun1( )
SEU-FEI Nano-Pico Center, Key Laboratory of MEMS of Ministry of Education, Southeast University, Nanjing 210096, China
College of Engineering and Applied Sciences, Nanjing University, Nanjing 210093, China

§ Yuwei Xiong and Kuibo Yin contributed equally to this work.

Show Author Information

Graphical Abstract

Abstract

The solid-electrolyte-based memristors have attracted tremendous attention for the next-generation nonvolatile memory for both logic and neuromorphic applications. However, they encounter variability performance challenges which originated from the random ionic transport and conductive filaments formation. Evidently, the electrochemical metallized mechanism associated with ion transport has been elucidated. Nonetheless, the failure mechanism caused by ion transport during cycles is rarely reported. Hereafter, the five stages of failure in the Ag/Ag10Ge15Te75/W memristor are elucidated through ex-situ current−voltage measurements combined with in-situ transmission electron microscopy characteristics. Our investigation reveals that the migration and enrichment of Ag ions result in the precipitation of Ag2Te. The formation of Ag2Te hinders the device's ability to maintain its bipolar characteristics and also decreases the resistance value of the high resistance state, thereby reducing the device's switching ratio. The promising results provide important guidance for the future design of structures and the manipulation of ion transport for high-performance memristors.

Electronic Supplementary Material

Download File(s)
6791_ESM.pdf (2.6 MB)

References

[1]

Wang, Z. R.; Wu, H. Q.; Burr, G. W.; Hwang, C. S.; Wang, K. L.; Xia, Q. F.; Yang, J. J. Resistive switching materials for information processing. Nat. Rev. Mater. 2020, 5, 173–195.

[2]

Yin, L.; Cheng, R. Q.; Wang, Z. X.; Wang, F.; Sendeku, M. G.; Wen, Y.; Zhan, X. Y.; He, J. Two-dimensional unipolar memristors with logic and memory functions. Nano Lett. 2020, 20, 4144–4152.

[3]

Wang, M.; Cai, S. H.; Pan, C.; Wang, C. Y.; Lian, X. J.; Zhuo, Y.; Xu, K.; Cao, T. J.; Pan, X. Q.; Wang, B. G. et al. Robust memristors based on layered two-dimensional materials. Nat. Electron. 2018, 1, 130–136.

[4]

Cai, F. X.; Correll, J. M.; Lee, S. H.; Lim, Y.; Bothra, V.; Zhang, Z. Y.; Flynn, M. P.; Lu, W. D. A fully integrated reprogrammable memristor-CMOS system for efficient multiply-accumulate operations. Nat. Electron. 2019, 2, 290–299.

[5]

Li, Y.; Ling, S. T.; He, R. Y.; Zhang, C.; Dong, Y.; Ma, C. L.; Jiang, Y. C.; Gao, J.; He, J. H.; Zhang, Q. C. A robust graphene oxide memristor enabled by organic pyridinium intercalation for artificial biosynapse application. Nano Res. 2023, 16, 11278–11287.

[6]

Song, M. K.; Namgung, S. D.; Lee, H.; Yoon, J. H.; Song, Y. W.; Cho, K. H.; Lee, Y. S.; Lee, J. S.; Nam, K. T.; Kwon, J. Y. Tyrosine-mediated analog resistive switching for artificial neural networks. Nano Res. 2023, 16, 858–864.

[7]

Huang, C. H.; Weng, C. Y.; Chen, K. H.; Chou, Y.; Wu, T. L.; Chou, Y. C. Multiple-state nonvolatile memory based on ultrathin indium oxide film via liquid metal printing. ACS Appl. Mater. Interfaces 2023, 15, 25838–25848.

[8]

Liu, X. S.; Qiu, J.; Li, B.; Cao, J.; Si, Z. H.; Zhang, M. R.; Liu, M. Y.; Xu, Q.; Chen, Y.; Chen, J. W. et al. Highly flexible and robust HfO x -based memristor for wearable in-memory computing. Appl. Phys. Lett. 2023, 123, 253502.

[9]

Raju, N. B.; Verma, D.; Balakrishnan, V. Effect of chemical doping on memristive behavior of VO2 microcrystals. Appl. Phys. Lett. 2022, 120, 062101

[10]

Zhu, K. C.; Pazos, S.; Aguirre, F.; Shen, T. Q.; Yuan, Y.; Zheng, W. W.; Alharbi, O.; Villena, M. A.; Fang, B.; Li, X. Y. et al. Hybrid 2D-CMOS microchips for memristive applications. Nature 2023, 618, 57–62

[11]

Afshari, S.; Radhakrishnan, S.; Xie, J.; Musisi-Nkambwe, M.; Meng, J.; He, W. X.; Seo, J. S.; Esqueda, I. S. Dot-product computation and logistic regression with 2D hexagonal-boron nitride (h-BN) memristor arrays. 2D Mater. 2023, 10, 035031.

[12]

Bera, J.; Betal, A.; Sharma, A.; Shankar, U.; Rath, A. K.; Sahu, S. CdSe quantum dot-based nanocomposites for ultralow-power memristors. ACS Appl. Nano Mater. 2022, 5, 8502–8510.

[13]

Zhong, L.; Li, M. D.; Yan, S. J.; Jie, W. J. Phase transition induced threshold resistive switching in two-dimensional VTe2 nanosheets for Boolean logic operations. Appl. Phys. Lett. 2023, 123, 073504.

[14]

Hu, Z. J.; Cao, F.; Yan, T. T.; Su, L.; Fang, X. S. In situ vulcanization synthesis of CuInS2 nanosheet arrays for a memristor with a high on-off ratio and low power consumption. J. Mater. Chem. C 2023, 11, 244–251.

[15]

John, R. A.; Shah, N.; Vishwanath, S. K.; Ng, S. E.; Febriansyah, B.; Jagadeeswararao, M.; Chang, C. H.; Basu, A.; Mathews, N. Halide perovskite memristors as flexible and reconfigurable physical unclonable functions. Nat. Commun. 2021, 12, 3681.

[16]

Fang, Y. T.; Zhai, S. B.; Chu, L.; Zhong, J. S. Advances in halide perovskite memristor from lead-based to lead-free materials. ACS Appl. Mater. Interfaces 2021, 13, 17141–17157.

[17]

Zhang, H. Z.; Ju, X.; Zhou, Y.; Gu, C. J.; Pan, J. S.; Ang, D. S. Realization of self-compliance resistive switching memory via tailoring interfacial oxygen. ACS Appl. Mater. Interfaces 2019, 11, 41490–41496.

[18]

Jagath, A. L.; Leong, C. H.; Kumar, T. N.; Almurib, H. A. F. Insight into physics-based RRAM models—Review. J. Eng. 2019, 2019, 4644–4652.

[19]

Clima, S.; Sankaran, K.; Chen, Y. Y.; Fantini, A.; Celano, U.; Belmonte, A.; Zhang, L. Q.; Goux, L.; Govoreanu, B.; Degraeve, R. et al. RRAMs based on anionic and cationic switching: A short overview. Phys. Status Solidi 2014, 8, 501–511.

[20]

Wu, M. C.; Ting, Y. H.; Chen, J. Y.; Wu, W. W. Low power consumption nanofilamentary ECM and VCM cells in a single sidewall of high-density VRRAM arrays. Adv. Sci. 2019, 6, 1902363.

[21]

Pan, F.; Gao, S.; Chen, C.; Song, C.; Zeng, F. Recent progress in resistive random access memories: Materials, switching mechanisms, and performance. Mater. Sci. Eng. R: Rep. 2014, 83, 1–59.

[22]

Hirose, Y.; Hirose, H. Polarity-dependent memory switching and behavior of Ag dendrite in Ag-photodoped amorphous As2S3 films. J. Appl. Phys. 1976, 47, 2767–2772.

[23]

Gao, Q.; Huang, A. P.; Hu, Q.; Zhang, X. J.; Chi, Y.; Li, R. M.; Ji, Y. H.; Chen, X. L.; Zhao, R. M.; Wang, M. et al. Stability and repeatability of a karst-like hierarchical porous silicon oxide-based memristor. ACS Appl. Mater. Interfaces 2019, 11, 21734–21740.

[24]

Yang, N.; Zhang, J.; Huang, J. K.; Liu, Y.; Shi, J. J.; Si, Q. L.; Yang, J.; Li, S. A. Multitasking memristor for high performance and ultralow power artificial synaptic device application. ACS Appl. Electron. Mater. 2022, 4, 3154–3165.

[25]

Wu, M. C.; Jang, W. Y.; Lin, C. H.; Tseng, T. Y. A study on low-power, nanosecond operation and multilevel bipolar resistance switching in Ti/ZrO2/Pt nonvolatile memory with 1T1R architecture. Semicond. Sci. Technol. 2012, 27, 065010.

[26]

Long, B.; Li, Y. B.; Jha, R. Switching characteristics of Ru/HfO2/TiO2− x /Ru RRAM devices for digital and analog nonvolatile memory applications. IEEE Electron Device Lett. 2012, 33, 706–708.

[27]

Prakash, A.; Park, J.; Song, J.; Woo, J.; Cha, E. J.; Hwang, H. Demonstration of low power 3-bit multilevel cell characteristics in a TaO x -based RRAM by stack engineering. IEEE Electron Device Lett. 2015, 36, 32–34.

[28]

Zhao, L.; Chen, H. Y.; Wu, S. C.; Jiang, Z.; Yu, S.; Hou, T. H.; Wong, H. S. P.; Nishi, Y. Multi-level control of conductive nano-filament evolution in HfO2 ReRAM by pulse-train operations. Nanoscale 2014, 6, 5698–5702.

[29]

Prakash, A.; Maikap, S.; Lai, C. S.; Lee, H. Y.; Chen, W. S.; Chen, F. T.; Kao, M. J.; Tsai, M. J. Improvement of uniformity of resistive switching parameters by selecting the electroformation polarity in IrO x /TaO x /WO x /W structure. Jpn. J. Appl. Phys. 2012, 51, 04DD06.

[30]

Cao, G.; Gao, C.; Wang, J. J.; Lan, J. L.; Yan, X. B. Memristor based on two-dimensional titania nanosheets for multi-level storage and information processing. Nano Res. 2022, 15, 8419–8427.

[31]

Yang, Y. C.; Gao, P.; Gaba, S.; Chang, T.; Pan, X. Q.; Lu, W. Observation of conducting filament growth in nanoscale resistive memories. Nat. Commun. 2012, 3, 732.

[32]

Liu, Q.; Sun, J.; Lv, H. B.; Long, S. B.; Yin, K. B.; Wan, N.; Li, Y. T.; Sun, L. T.; Liu, M. Real-time observation on dynamic growth/dissolution of conductive filaments in oxide-electrolyte-based ReRAM. Adv. Mater. 2012, 24, 1844–1849.

[33]

Hughes, M. A.; Burgess, A.; Hinder, S.; Gholizadeh, A. B.; Craig, C.; Hewak, D. W. High speed chalcogenide glass electrochemical metallization cells with various active metals. Nanotechnology 2018, 29, 315202.

[34]

Goux, L.; Chen, Y. Y.; Pantisano, L.; Wang, X. P.; Groeseneken, G.; Jurczak, M.; Wouters, D. J. On the gradual unipolar and bipolar resistive switching of TiN\HfO2\Pt memory systems. Electrochem. Solid-State Lett. 2010, 13, G54–G56.

[35]

Chen, J. B.; Zhang, K.; Jiang, Z. J.; Gao, L. Y.; Xu, J. W.; Chen, J. T.; Zhao, Y.; Li, Y.; Wang, C. W. Cu x S nanosheets with controllable morphology and alignment for memristor devices. Nanotechnology 2022, 33, 245204.

[36]

Choi, B. J.; Torrezan, A. C.; Norris, K. J.; Miao, F.; Strachan, J. P.; Zhang, M. X.; Ohlberg, D. A. A.; Kobayashi, N. P.; Yang, J. J.; Williams, R. S. Electrical performance and scalability of Pt dispersed SiO2 nanometallic resistance switch. Nano Lett. 2013, 13, 3213–3217.

[37]

You, B. K.; Kim, J. M.; Joe, D. J.; Yang, K.; Shin, S.Jung, Y.S.; Lee, K. J. Reliable memristive switching memory devices enabled by densely packed silver nanocone arrays as electric-field concentrators. ACS Nano 2016, 10, 9478–9488.

[38]

Imanishi, Y.; Hayashi, H.; Nakaoka, T. Spontaneous room-temperature formation of broccoli-like Ag-GeTe nanostructures assisting filamentary resistive switching. J. Mater. Sci. 2018, 53, 12254–12264.

[39]

Yeon, H.; Lin, P.; Choi, C.; Tan, S. H.; Park, Y.; Lee, D.; Lee, J.; Xu, F.; Gao, B.; Wu, H. Q. et al. Alloying conducting channels for reliable neuromorphic computing. Nat. Nanotechnol. 2020, 15, 574–579.

[40]

Xu, L.; Li, Y.; Yu, N. N.; Zhong, Y. P.; Miao, X. S. Local order origin of thermal stability enhancement in amorphous Ag doping GeTe. Appl. Phys. Lett. 2015, 106, 031904.

[41]

Li, Y.; Zhou, Y. X.; Xu, L.; Lu, K.; Wang, Z. R.; Duan, N.; Jiang, L.; Cheng, L.; Chang, T. C.; Chang, K. C. et al. Realization of functional complete stateful boolean logic in memristive crossbar. ACS Appl. Mater. Interfaces 2016, 8, 34559–34567.

[42]

Xu, H. N.; Liu, Z. G.; Xia, Y. D.; Chen, L.; Zhu, H.; Guo, H. X.; Yin, J. Phase change behavior in Ag10Ge15Te75 and the electrolytic resistive switching in both amorphous and crystalline Ag10Ge15Te75 films. Electrochem. Solid-State Lett. 2011, 14, H99–H102.

[43]

Chen, L.; Liu, Z. G.; Xia, Y. D.; Yin, K. B.; Gao, L. G.; Yin, J. Electrical field induced precipitation reaction and percolation in Ag30Ge17Se53 amorphous electrolyte films. Appl. Phys. Lett. 2009, 94, 162112.

[44]

Robin, P.; Kavokine, N.; Bocquet, L. Modeling of emergent memory and voltage spiking in ionic transport through angstrom-scale slits. Science 2021, 373, 687–691.

[45]

Xiong, T. Y.; Li, C. W.; He, X. L.; Xie, B. Y.; Zong, J. W.; Jiang, Y. N.; Ma, W. J.; Wu, F.; Fei, J. J.; Yu, P. et al. Neuromorphic functions with a polyelectrolyte-confined fluidic memristor. Science 2023, 379, 156–161.

[46]

Dong, Z. Q.; Ding, K. Y.; Wang, X.; Rao, F.; Tian, H.; Zhang, Z. In situ observation of dynamic behavior of phase-change heterostructure (PCH) memory materials. J. Chin. Electron Microsc. Soc. 2021, 40, 1–6.

[47]

Zhang, Q. B.; Yin, K. B.; Dong, H.; Zhou, Y. L.; Tan, X. D.; Yu, K. H.; Hu, X. H.; Xu, T.; Zhu, C.; Xia, W. W. et al. Electrically driven cation exchange for in situ fabrication of individual nanostructures. Nat. Commun. 2017, 8, 14889.

Nano Research
Cite this article:
Xiong Y, Yin K, Sun W, et al. Observation of the failure mechanism in Ag10Ge15Te75-based memristor induced by ion transport. Nano Research, 2024, https://doi.org/10.1007/s12274-024-6791-2
Topics:

186

Views

0

Crossref

0

Web of Science

0

Scopus

0

CSCD

Altmetrics

Received: 27 March 2024
Revised: 17 May 2024
Accepted: 28 May 2024
Published: 03 July 2024
© Tsinghua University Press 2024
Return