AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Microfluidic synthesis of hollow CsPbBr3 perovskite nanocrystals through the nanoscale Kirkendall effect

Yue Chen1Xiaoyu Zhang1Jinzhou Jiang2Gaoyu Chen1,3Kunhong Zhou1Xinwen Zhang2( )Fajing Li4Caojin Yuan4Jianchun Bao1Xiangxing Xu1,5( )
Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Key Laboratory of New Power Batteries, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China
Key Laboratory for Organic Electronics and Information Displays, Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications, Nanjing 210023, China
Frontiers Science Center for Flexible Electronics, Institute of Flexible Electronics (IFE), Northwestern Polytechnical University, Xi’an 710072, China
Jiangsu Key Laboratory for Opto-Electronic Technology, School of Physics and Technology, Nanjing Normal University, Nanjing 210023, China
State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, China
Show Author Information

Graphical Abstract

Hollow CsPbBr3 perovskite nanocrystals exhibiting unique optoelectronic properties were successfully synthesized by a microfluidic approach. The formation of the cavity within the nanocrystals complies with the mechanism of the nanoscale Kirkendall effect.

Abstract

All inorganic metal halide perovskite nanocrystals (NCs) have attracted much attention for their outstanding optoelectronic properties, which can be tuned by the composition, surface, size and morphology in nanoscale. Herein, we report the microfluidic synthesis of hollow CsPbBr3 perovskite NCs through the nanoscale Kirkendall effect. The formation mechanism of the hollow structure (Kirkendall void) controlled by the temperature, flow rate, ratios of precursors and ligands was investigated. Compared with the solid CsPbBr3 NCs of the same size, the hollow CsPbBr3 NCs exhibit blue shifts in ultraviolet−visible (UV−vis) absorption and photoluminescence (PL) spectra, and remarkably longer PL average lifetime (~ 98.2 ns). Quantum confinement effect, inner surface induced additional trap states and lattice strain of the hollow CsPbBr3 NCs were discussed in understanding their unique optoelectronic properties. The hollow CsPbBr3 NC based photodetector exhibits an outstanding negative photoconductivity (NPC) detectivity of 8.9 × 1012 Jones. They also show potentials in perovskite NC based photovoltaic and light emitting diodes (LEDs).

References

[1]

Akkerman, Q. A.; Nguyen, T. P. T.; Boehme, S. C.; Montanarella, F.; Dirin, D. N.; Wechsler, P.; Beiglböck, F.; Rainò, G.; Erni, R.; Katan, C. et al. Controlling the nucleation and growth kinetics of lead halide perovskite quantum dots. Science 2022, 377, 1406–1412.

[2]

Cha, M. Y.; Da, P. M.; Wang, J.; Wang, W. Y.; Chen, Z. H.; Xiu, F. X.; Zheng, G. F.; Wang, Z. S. Enhancing perovskite solar cell performance by interface engineering using CH3NH3PbBr0.9I2.1 quantum dots. J. Am. Chem. Soc. 2016, 138, 8581–8587.

[3]

Dong, H. Y.; Zhang, C. H.; Liu, X. L.; Yao, J. N.; Zhao, Y. S. Materials chemistry and engineering in metal halide perovskite lasers. Chem. Soc. Rev. 2020, 49, 951–982.

[4]

Xing, J.; Yan, F.; Zhao, Y. W.; Chen, S.; Yu, H. K.; Zhang, Q.; Zeng, R. G.; Demir, H. V.; Sun, X. W.; Huan, A. et al. High-efficiency light-emitting diodes of organometal halide perovskite amorphous nanoparticles. ACS Nano 2016, 10, 6623–6630.

[5]

Hao, J. X.; Xiao, X. Recent development of optoelectronic application based on metal halide perovskite nanocrystals. Front. Chem. 2022, 9, 822106.

[6]

Tong, Y.; Bladt, E.; Aygüler, M. F.; Manzi, A.; Milowska, K. Z.; Hintermayr, V. A.; Docampo, P.; Bals, S.; Urban, A. S.; Polavarapu, L. et al. Highly luminescent cesium lead halide perovskite nanocrystals with tunable composition and thickness by ultrasonication. Angew. Chem., Int. Ed. 2016, 55, 13887–13892.

[7]

Dey, A.; Ye, J. Z.; De, A.; Debroye, E.; Ha, S. K.; Bladt, E.; Kshirsagar, A. S.; Wang, Z. Y.; Yin, J.; Wang, Y. et al. State of the art and prospects for halide perovskite nanocrystals. ACS Nano 2021, 15, 10775–10981.

[8]

Protesescu, L.; Yakunin, S.; Bodnarchuk, M. I.; Krieg, F.; Caputo, R.; Hendon, C. H.; Yang, R. X.; Walsh, A.; Kovalenko, M. V. Nanocrystals of cesium lead halide perovskites (CsPbX3, X = Cl, Br, and I): Novel optoelectronic materials showing bright emission with wide color gamut. Nano Lett. 2015, 15, 3692–3696.

[9]

Chen, G. Y.; Zhu, X.; Xing, C. Y.; Wang, Y. K.; Xu, X. X.; Bao, J. C.; Huang, J. H.; Zhao, Y. R.; Wang, X.; Zhou, X. Q. et al. Machine learning-assisted microfluidic synthesis of perovskite quantum dots. Adv. Photonics Res. 2023, 4, 2200230.

[10]

Zang, J.; An, T. H.; Dong, Y. J.; Fang, X. L.; Zheng, M. S.; Dong, Q. F.; Zheng, N. F. Hollow-in-hollow carbon spheres with hollow foam-like cores for lithium-sulfur batteries. Nano Res. 2015, 8, 2663–2675.

[11]

Hou, P. F.; Cui, P. L.; Liu, H.; Li, J. L.; Yang, J. Nanoscale noble metals with a hollow interior formed through inside-out diffusion of silver in solid-state core-shell nanoparticles. Nano Res. 2015, 8, 512–522.

[12]

Wang, W. S.; Dahl, M.; Yin, Y. D. Hollow nanocrystals through the nanoscale Kirkendall effect. Chem. Mater. 2013, 25, 1179–1189.

[13]

Ouyang, G.; Wang, C. X.; Yang, G. W. Surface energy of nanostructural materials with negative curvature and related size effects. Chem. Rev. 2009, 109, 4221–4247.

[14]

Ouyang, G.; Yang, G. W. Band gap blueshift of hollow quantum dots. IEEE Trans. Nanotechnol. 2012, 11, 866–870.

[15]

Peng, Q.; Dong, Y. J.; Li, Y. D. ZnSe semiconductor hollow microspheres. Angew. Chem., Int. Ed. 2003, 42, 3027–3030.

[16]

Hussain, I.; Sahoo, S.; Sayed, M. S.; Ahmad, M.; Javed, M. S.; Lamiel, C.; Li, Y. X.; Shim, J. J.; Ma, X. X.; Zhang, K. L. Hollow nano- and microstructures: Mechanism, composition, applications, and factors affecting morphology and performance. Coord. Chem. Rev. 2022, 458, 214429.

[17]

Zhang, Q.; Wang, W. S.; Goebl, J.; Yin, Y. D. Self-templated synthesis of hollow nanostructures. Nano Today 2009, 4, 494–507.

[18]

Pan, S.; Chen, Y. H.; Wang, Z. W.; Harn, Y. W.; Yu, J.; Wang, A.; Smith, M. J.; Li, Z. L.; Tsukruk, V. V.; Peng, J. et al. Strongly-ligated perovskite quantum dots with precisely controlled dimensions and architectures for white light-emitting diodes. Nano Energy 2020, 77, 105043.

[19]

Tu, K. N.; Gösele, U. Hollow nanostructures based on the Kirkendall effect: Design and stability considerations. Appl. Phys. Lett. 2005, 86, 093111.

[20]

Huang, J. B.; Yan, Y. C.; Li, X.; Qiao, X. R.; Wu, X. Q.; Li, J. J.; Shen, R.; Yang, D. R.; Zhang, H. Unexpected Kirkendall effect in twinned icosahedral nanocrystals driven by strain gradient. Nano Res. 2020, 13, 2641–2649.

[21]

Fan, H. J.; Knez, M.; Scholz, R.; Hesse, D.; Nielsch, K.; Zacharias, M.; Gösele, U. Influence of surface diffusion on the formation of hollow nanostructures induced by the Kirkendall effect: The basic concept. Nano Lett. 2007, 7, 993–997.

[22]

Yin, Y. D.; Rioux, R. M.; Erdonmez, C. K.; Hughes, S.; Somorjai, G. A.; Alivisatos, A. P. Formation of hollow nanocrystals through the nanoscale Kirkendall effect. Science 2004, 304, 711–714.

[23]

Yang, Z. J.; Yang, N. L.; Pileni, M. P. Nano Kirkendall effect related to nanocrystallinity of metal nanocrystals: Influence of the outward and inward atomic diffusion on the final nanoparticle structure. J. Phys. Chem. C 2015, 119, 22249–22260.

[24]

Liang, X.; Wang, X.; Zhuang, Y.; Xu, B.; Kuang, S. M.; Li, Y. D. Formation of CeO2-ZrO2 solid solution nanocages with controllable structures via Kirkendall effect. J. Am. Chem. Soc. 2008, 130, 2736–2737.

[25]

Niu, K. Y.; Park, J.; Zheng, H. M.; Alivisatos, A. P. Revealing bismuth oxide hollow nanoparticle formation by the Kirkendall effect. Nano Lett. 2013, 13, 5715–5719.

[26]

Yin, Y.; Erdonmez, C. K.; Cabot, A.; Hughes, S.; Alivisatos, A. P. Colloidal synthesis of hollow cobalt sulfide nanocrystals. Adv. Funct. Mater. 2006, 16, 1389–1399.

[27]

Zheng, J.; Song, X. B.; Zhang, Y. H.; Li, Y.; Li, X. G.; Pu, Y. K. Nanosized aluminum nitride hollow spheres formed through a self-templating solid-gas interface reaction. J. Solid State Chem. 2007, 180, 276–283.

[28]

Wu, Y. T.; Wang, H.; Ji, S.; Pollet, B. G.; Wang, X. Y.; Wang, R. F. Engineered porous Ni2P-nanoparticle/Ni2P-nanosheet arrays via the Kirkendall effect and Ostwald ripening towards efficient overall water splitting. Nano Res. 2020, 13, 2098–2105.

[29]

Akkerman, Q. A.; D'Innocenzo, V.; Accornero, S.; Scarpellini, A.; Petrozza, A.; Prato, M.; Manna, L. Tuning the optical properties of cesium lead halide perovskite nanocrystals by anion exchange reactions. J. Am. Chem. Soc. 2015, 137, 10276–10281.

[30]

Koscher, B. A.; Bronstein, N. D.; Olshansky, J. H.; Bekenstein, Y.; Alivisatos, A. P. Surface- vs Diffusion-limited mechanisms of anion exchange in CsPbBr3 nanocrystal cubes revealed through kinetic studies. J. Am. Chem. Soc. 2016, 138, 12065–12068.

[31]

Shewmon, N. T.; Yu, H.; Constantinou, I.; Klump, E.; So, F. Formation of perovskite heterostructures by ion exchange. ACS Appl. Mater. Interfaces 2016, 8, 33273–33279.

[32]

Liu, D. Y.; Kelly, T. L. Perovskite solar cells with a planar heterojunction structure prepared using room-temperature solution processing techniques. Nat. Photonics 2013, 8, 133–138.

[33]

Worku, M.; Tian, Y.; Zhou, C. K.; Lin, H. R.; Chaaban, M.; Xu, L. J.; He, Q. Q.; Beery, D.; Zhou, Y.; Lin, X. S. et al. Hollow metal halide perovskite nanocrystals with efficient blue emissions. Sci. Adv. 2020, 6, eaaz5961.

[34]

Pan, D. X.; Fu, Y. P.; Chen, J.; Czech, K. J.; Wright, J. C.; Jin, S. Visualization and studies of ion-diffusion kinetics in cesium lead bromide perovskite nanowires. Nano Lett. 2018, 18, 1807–1813.

[35]

Dong, Y. T.; Qiao, T.; Kim, D.; Parobek, D.; Rossi, D.; Son, D. H. Precise control of quantum confinement in cesium lead halide perovskite quantum dots via thermodynamic equilibrium. Nano Lett. 2018, 18, 3716–3722.

[36]

He, Y. J.; Pang, X. C.; Jiang, B. B.; Feng, C. W.; Harn, Y. W.; Chen, Y. H.; Yoon, Y. J.; Pan, S.; Lu, C. H.; Chang, Y. J. et al. Unconventional route to uniform hollow semiconducting nanoparticles with tailorable dimensions, compositions, surface chemistry, and near-infrared absorption. Angew. Chem., Int. Ed. 2017, 56, 12946–12951.

[37]

Ouyang, G.; Yang, G. W. ZnO hollow quantum dot: A promising deep-UV light emitter. ACS Appl. Mater. Interfaces 2012, 4, 210–213.

[38]

Efros, A. L.; Brus, L. E. Nanocrystal quantum dots: From discovery to modern development. ACS Nano 2021, 15, 6192–6210.

[39]

Sun, C. Q. Size dependence of nanostructures: Impact of bond order deficiency. Prog. Solid State Chem. 2007, 35, 1–159.

[40]

Forde, A.; Fagan, J. A.; Schaller, R. D.; Thomas, S. A.; Brown, S. L.; Kurtti, M. B.; Petersen, R. J.; Kilin, D. S.; Hobbie, E. K. Brightly luminescent CsPbBr3 nanocrystals through ultracentrifugation. J. Phys. Chem. Lett. 2020, 11, 7133–7140.

[41]

Krieg, F.; Sercel, P. C.; Burian, M.; Andrusiv, H.; Bodnarchuk, M. I.; Stöferle, T.; Mahrt, R. F.; Naumenko, D.; Amenitsch, H.; Rainò, G. et al. Monodisperse long-chain sulfobetaine-capped CsPbBr3 nanocrystals and their superfluorescent assemblies. ACS Cent. Sci. 2021, 7, 135–144.

[42]

Brandt, R. E.; Poindexter, J. R.; Gorai, P.; Kurchin, R. C.; Hoye, R. L. Z.; Nienhaus, L.; Wilson, M. W. B.; Polizzotti, J. A.; Sereika, R.; Žaltauskas, R. et al. Searching for “defect-tolerant” photovoltaic materials: Combined theoretical and experimental screening. Chem. Mater. 2017, 29, 4667–4674.

[43]

Ye, J. Z.; Byranvand, M. M.; Martínez, C. O.; Hoye, R. L. Z.; Saliba, M.; Polavarapu, L. Defect passivation in lead-halide perovskite nanocrystals and thin films: Toward efficient LEDs and solar cells. Angew. Chem., Int. Ed. 2021, 60, 21636–21660.

[44]

Wang, Y.; Zhi, M.; Chan, Y. Delayed exciton formation involving energetically shallow trap states in colloidal CsPbBr3 quantum dots. J. Phys. Chem. C 2017, 121, 28498–28505.

[45]

Vonk, S. J. W.; Fridriksson, M. B.; Hinterding, S. O. M.; Mangnus, M. J. J.; van Swieten, T. P.; Grozema, F. C.; Rabouw, F. T.; van der Stam, W. Trapping and detrapping in colloidal perovskite nanoplatelets: Elucidation and prevention of nonradiative processes through chemical treatment. J. Phys. Chem. C 2020, 124, 8047–8054.

[46]

Peters, J. A.; Liu, Z.; Bulgin, O.; He, Y.; Klepov, V. V.; De Siena, M. C.; Kanatzidis, M. G.; Wessels, B. W. Excitons in CsPbBr3 halide perovskite. J. Phys. Chem. Lett. 2021, 12, 9301–9307.

[47]

Chen, L.; Li, B.; Zhang, C. F.; Huang, X. Y.; Wang, X. Y.; Xiao, M. Composition-dependent energy splitting between bright and dark excitons in lead halide perovskite nanocrystals. Nano Lett. 2018, 18, 2074–2080.

[48]

Xu, K. Y.; Vliem, J. F.; Meijerink, A. Long-lived dark exciton emission in Mn-doped CsPbCl3 perovskite nanocrystals. J. Phys. Chem. C 2019, 123, 979–984.

[49]

Lu, Z. D.; Li, Y. X.; Xue, Y. L.; Zhou, W. T.; Bayer, S.; Williams, I. D.; Rogach, A. L.; Nagl, S. Water-stable CsPbBr3/Cs4PbBr6 nanocrystals with a mixed fluoropolymer shell for optical temperature sensing. ACS Appl. Nano Mater. 2022, 5, 5025–5034.

[50]

Shin, Y. M.; Lee, J. H.; Kim, G. Y.; Ju, H. M.; Jung, Y. S.; Jo, J. W.; Choi, M. J. Dual-phase stabilized perovskite nanowires for reduced defects and longer carrier lifetime. Adv. Funct. Mater. 2023, 33, 2210155.

[51]

Ghosh, G.; Jana, B.; Sain, S.; Ghosh, A.; Patra, A. Influence of shape on the carrier relaxation dynamics of CsPbBr3 perovskite nanocrystals. Phys. Chem. Chem. Phys. 2019, 21, 19318–19326.

[52]

Ravi, V. K.; Saikia, S.; Yadav, S.; Nawale, V. V.; Nag, A. CsPbBr3/ZnS core/shell type nanocrystals for enhancing luminescence lifetime and water stability. ACS Energy Lett. 2020, 5, 1794–1796.

[53]

Zhu, L. P.; Wang, Y. C.; Li, D.; Wang, L. F.; Wang, Z. L. Enhanced spin-orbit coupled photoluminescence of perovskite CsPbBr3 quantum dots by piezo-phototronic effect. Nano Lett. 2020, 20, 8298–8304.

[54]

He, Q. Q.; Chen, G. Y.; Wang, Y. K.; Liu, X. Y.; Xu, D. T.; Xu, X. X.; Liu, Y.; Bao, J. C.; Wang, X. CsPbX3-ITO (X = Cl, Br, I) nano-heterojunctions: Voltage tuned positive to negative photoresponse. Small 2021, 17, 2101403.

[55]

An, J. K.; Chen, G. Y.; Zhu, X.; Lv, X.; Bao, J. C.; Xu, X. X. Ambipolar photoresponse of CsPbX3-ZnO (X = Cl, Br, and I) heterojunctions. ACS Appl. Electron. Mater. 2022, 4, 1525–1532.

[56]

Li, J.; Duan, C. H.; Wen, Q. Y.; Yuan, L. G.; Zou, S. B.; Chen, C.; Xie, W. G.; Lin, D. X.; Chan, C. C. S.; Wong, K. S. et al. Reciprocally photovoltaic light-emitting diode based on dispersive perovskite nanocrystal. Small 2022, 18, 2107145.

[57]

Bi, D. Q.; Tress, W.; Dar, M. I.; Gao, P.; Luo, J. S.; Renevier, C.; Schenk, K.; Abate, A.; Giordano, F.; Baena, J. P. C. et al. Efficient luminescent solar cells based on tailored mixed-cation perovskites. Sci. Adv. 2016, 2, e1501170.

[58]

Xie, J. S.; Hang, P. J.; Wang, H.; Zhao, S. H.; Li, G.; Fang, Y. J.; Liu, F.; Guo, X. L.; Zhu, H. P.; Lu, X. H. et al. Perovskite bifunctional device with improved electroluminescent and photovoltaic performance through interfacial energy-band engineering. Adv. Mater. 2019, 31, 1902543.

Nano Research
Pages 8487-8494
Cite this article:
Chen Y, Zhang X, Jiang J, et al. Microfluidic synthesis of hollow CsPbBr3 perovskite nanocrystals through the nanoscale Kirkendall effect. Nano Research, 2024, 17(9): 8487-8494. https://doi.org/10.1007/s12274-024-6786-z
Topics:

351

Views

0

Crossref

0

Web of Science

0

Scopus

0

CSCD

Altmetrics

Received: 30 March 2024
Revised: 12 May 2024
Accepted: 26 May 2024
Published: 01 July 2024
© Tsinghua University Press 2024
Return