AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article | Online First

Engineering S-scheme W18O49/ZnIn2S4 heterojunction by CoxP nanoclusters for enhanced charge transfer capability and solar hydrogen evolution

Xiaojie Liu1Erkang Liu3Zixian Wang1Wen Zhang2Mingyu Dou1( )Hua Yang1Changhua An2( )Dacheng Li1Jianmin Dou1( )
Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng 252059, China
Tianjin Key Laboratory of Organic Solar Cell and Photochemical Conversion, School of Chemistry and Chemical Engineering, Tianjin Key Laboratory of Advanced Functional Porous Materials, Institute for New Energy Materials and Low-Carbon Technologies, Tianjin University of Technology, Tianjin 300384, China
Institute of Powder Metallurgy and Advanced Ceramics, School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China
Show Author Information

Graphical Abstract

Abstract

Enhancement of the light-absorption response and utilization of the photogenerated carriers represent a robust strategy for the design of high-performance photocatalyst. In this work, grafting CoxP nanoclusters onto S-scheme heterojunction of W18O49/ZnIn2S4 (WO/ZIS-CoxP) with strong response to the ultraviolet–visible–near infrared ray (UV–vis–NIR) region has been achieved, which possesses efficient electron-transfer-channel, and boosts charge-separation and transport kinetics. The as-prepared WO/ZIS-CoxP yields an impressive solar-driven hydrogen production rate of 45 mmol·g−1·h−1. The increased photocatalytic performance is attributed to the synergistic effect of the composite catalyst: (1) The local surface plasmon resonance-induced “hot electron” injection of W18O49 significantly increases the electron density; (2) the engineered S-scheme directional electron transfer promotes charge separation and enhances the reducing capability of photoexcited electrons; and (3) CoxP as electron-trap site for accelerating surface proton reduction reaction. This work provides a platform to impart nonprecious co-catalyst for engineering S-scheme heterojunction, serving a class of efficient solar-driven photocatalyst towards hydrogen production.

Electronic Supplementary Material

Video
6773_ESM2.mp4
Download File(s)
6773_ESM1.pdf (7.3 MB)

References

[1]

Zhou, P.; Navid, I. A.; Ma, Y. J.; Xiao, Y. X.; Wang, P.; Ye, Z. W.; Zhou, B. W.; Sun, K.; Mi, Z. T. Solar-to-hydrogen efficiency of more than 9% in photocatalytic water splitting. Nature 2023, 613, 66–70.

[2]

Liu, Y. N.; Liu, C. H.; Debnath, T.; Wang, Y.; Pohl, D.; Besteiro, L. V.; Meira, D. M.; Huang, S. Y.; Yang, F.; Rellinghaus, B. et al. Silver nanoparticle enhanced metal-organic matrix with interface-engineering for efficient photocatalytic hydrogen evolution. Nat. Commun. 2023, 14, 541.

[3]

Ruan, X. W.; Huang, C. X.; Cheng, H.; Zhang, Z. Q.; Cui, Y.; Li, Z. Y.; Xie, T. F.; Ba, K. K.; Zhang, H. Y.; Zhang, L. et al. A twin S-scheme artificial photosynthetic system with self-assembled heterojunctions yields superior photocatalytic hydrogen evolution rate. Adv. Mater. 2023, 35, 2209141.

[4]

Wu, L.; Su, F. H.; Liu, T.; Liu, G. Q.; Li, Y.; Ma, T.; Wang, Y. F.; Zhang, C.; Yang, Y.; Yu, S. H. Phosphorus-doped single-crystalline quaternary sulfide nanobelts enable efficient visible-light photocatalytic hydrogen evolution. J. Am. Chem. Soc. 2022, 144, 20620–20629.

[5]

Wang, L.; Xu, X.; Cheng, Q. F.; Dou, S. X.; Du, Y. Near-infrared-driven photocatalysts: Design, construction, and applications. Small 2021, 17, 1904107.

[6]

Yang, D.; Li, Z. G.; Zhang, X. H.; Ren, Z. H.; Lu, W. H.; Liu, H. N.; Guo, X. M.; Zhang, J. J.; Bu, X. H. Rational design of ZnCdS/TpPa-1-COF heterostructure photocatalyst by strengthening the interface connection in solar hydrogen production reactions. Nano Res. 2024, 17, 1027–1034.

[7]

Ma, D. D.; Shi, J. W.; Sun, L.; Sun, Y. X.; Mao, S. M.; Pu, Z. X.; He, C.; Zhang, Y. J.; He, D.; Wang, H. K. et al. Knack behind the high performance CdS/ZnS-NiS nanocomposites: Optimizing synergistic effect between cocatalyst and heterostructure for boosting hydrogen evolution. Chem. Eng. J. 2022, 431, 133446.

[8]

Zhang, G. R.; Li, X. J.; Li, N.; Wu, T. T.; Wang, L. Face-to-face heterojunctions within 2D/2D porous NiCo oxyphosphide/g-C3N4 towards efficient and stable photocatalytic H2 evolution. Nano Res. 2023, 16, 6568–6576.

[9]

Li, B. S.; Lai, C.; Lin, H. J.; Liu, S. Y.; Qin, L.; Zhang, M. M.; Zhou, M. Z.; Li, L.; Yi, H.; Chen, L. The promising NIR light-driven MO3− x (M = Mo, W) photocatalysts for energy conversion and environmental remediation. Chem. Eng. J. 2022, 431, 134044.

[10]

Gu, Y. F.; Guo, B. B.; Yi, Z.; Wu, X. W.; Zhang, J.; Yang, H. Synthesis of a self-assembled dual morphologies Ag-NPs/SrMoO4 photocatalyst with LSPR effect for the degradation of methylene blue dye. ChemistrySelect 2022, 7, e202201274.

[11]

Wang, Y.; Wang, Y.; Aravind, I.; Cai, Z.; Shen, L.; Zhang, B. X.; Wang, B.; Chen, J. H.; Zhao, B. F.; Shi, H. T. et al. In situ investigation of ultrafast dynamics of hot electron-driven photocatalysis in plasmon-resonant grating structures. J. Am. Chem. Soc. 2022, 144, 3517–3526.

[12]

Li, J.; Lou, Z. Z.; Li, B. J. Nanostructured materials with localized surface plasmon resonance for photocatalysis. Chin. Chem. Lett. 2022, 33, 1154–1168.

[13]

Wei, Z. J.; Ji, T.; Zhou, X. M.; Guo, J. W.; Yu, X.; Liu, H.; Wang, J. G. Synergistic enhancement of photocatalytic CO2 reduction by built-in electric field/piezoelectric effect and surface plasmon resonance via PVDF/CdS/Ag heterostructure. Small 2023, 19, 2304202.

[14]

Li, N.; Fan, H. K.; Zhao, W. W.; Gao, Y. Q.; Ge, L. 2D/0D plasmonic CuSe/CdS for efficient photocatalytic hydrogen activity via strong Vis–NIR light and interfacial effect. Appl. Surf. Sci. 2022, 590, 153028.

[15]

Chen, X.; Guo, R. T.; Pan, W. G.; Yuan, Y.; Hu, X.; Bi, Z. X.; Wang, J. A novel double S-scheme photocatalyst Bi7O9I3/Cd0.5Zn0.5S QDs/WO3− x with efficient full-spectrum-induced phenol photodegradation. Appl. Catal. B: Environ. 2022, 318, 121839.

[16]

Ren, Y. M.; Feng, D. S.; Yan, Z. M.; Sun, Z. X.; Zhang, Z. X.; Xu, D. W.; Qiao, C.; Chen, Z. H.; Jia, Y.; Chan Jun, S. et al. Interfacial coupled engineering of plasmonic amorphous MoO3− x nanodots/g-C3N4 nanosheets for photocatalytic water splitting and photothermal conversion. Chem. Eng. J. 2023, 453, 139875.

[17]

Manthiram, K.; Alivisatos, A. P. Tunable localized surface plasmon resonances in tungsten oxide nanocrystals. J. Am. Chem. Soc. 2012, 134, 3995–3998.

[18]

Bandi, S.; Srivastav, A. K. Review: Oxygen-deficient tungsten oxides. J. Mater. Sci. 2021, 56, 6615–6644.

[19]

Lu, Y.; Jia, X. F.; Ma, Z. Y.; Li, Y.; Yue, S.; Liu, X. F.; Zhang, J. Y. W5+–W5+ pair induced LSPR of W18O49 to sensitize ZnIn2S4 for full-spectrum solar-light-driven photocatalytic hydrogen evolution. Adv. Funct. Mater. 2022, 32, 2203638.

[20]

Zheng, N. N.; Zhang, S. H.; Wang, L.; Qi, Z. L.; Peng, Q.; Jian, L. R.; Bai, Y.; Feng, Y.; Shen, J. C.; Wang, R. X. et al. Boosting image-guiding radiation therapy through W18O49 nanospheres and the second near-infrared light irradiation. Nano Res. 2022, 15, 2315–2323.

[21]

Lu, N.; Zhang, Z. Y.; Wang, Y.; Liu, B. K.; Guo, L. J.; Wang, L.; Huang, J. D.; Liu, K. C.; Dong, B. Direct evidence of IR-driven hot electron transfer in metal-free plasmonic W18O49/Carbon heterostructures for enhanced catalytic H2 production. Appl. Catal. B: Environ. 2018, 233, 19–25.

[22]

Zhang, Z. Y.; Huang, J. D.; Fang, Y. R.; Zhang, M. Y.; Liu, K. C.; Dong, B. A nonmetal plasmonic Z-scheme photocatalyst with UV- to NIR-driven photocatalytic protons reduction. Adv. Mater. 2017, 29, 1606688.

[23]

Hong, I.; Chen, Y. A.; Hsu, Y. J.; Yong, K. Triple-channel charge transfer over W18O49/Au/g-C3N4 Z-scheme photocatalysts for achieving broad-spectrum solar hydrogen production. ACS Appl. Mater. Interfaces 2021, 13, 52670–52680.

[24]

Liu, T.; Li, Y. Z.; Lv, Y. H.; Qiu, P. Y.; Xiong, Y.; Tian, J. Three-dimensional S-scheme heterojunction by integration of purple tungsten oxide nanowires and cadmium sulfide nanospheres for effective photocatalytic hydrogen generation. J. Colloid Interface Sci. 2023, 640, 568–577.

[25]

Fu, J. W.; Xu, Q. L.; Low, J.; Jiang, C. J.; Yu, J. G. Ultrathin 2D/2D WO3/g-C3N4 step-scheme H2-production photocatalyst. Appl. Catal. B: Environ. 2019, 243, 556–565.

[26]

Gu, Y. P.; Li, Y. K.; Feng, H. Q.; Han, Y. N.; Li, Z. J. Built-in electric field induced S-scheme g-C3N4 homojunction for efficient photocatalytic hydrogen evolution: Interfacial engineering and morphology control. Nano Res. 2024, 17, 4961–4970.

[27]

Zhang, G. P.; Wu, H.; Chen, D. Y.; Li, N. J.; Xu, Q. F.; Li, H.; He, J. H.; Lu, J. M. A mini-review on ZnIn2S4-based photocatalysts for energy and environmental application. Green Energy Environ. 2022, 7, 176–204.

[28]

Dhakshinamoorthy, A.; Asiri, A. M.; García, H. Metal-organic framework (MOF) compounds: Photocatalysts for redox reactions and solar fuel production. Angew. Chem., Int. Ed. 2016, 55, 5414–5445.

[29]

Lu, X. W.; Quan, L. M.; Hou, H. J.; Qian, J. C.; Liu, Z. W.; Zhang, Q. F. Fabrication of 1D/2D Y-doped CeO2/ZnIn2S4 S-scheme photocatalyst for enhanced photocatalytic H2 evolution. J. Alloys Compd. 2022, 925, 166552.

[30]

Xi, Y. M.; Chen, W. B.; Dong, W. R.; Fan, Z. X.; Wang, K. F.; Shen, Y.; Tu, G. M.; Zhong, S. X.; Bai, S. Engineering an Interfacial facet of S-scheme heterojunction for improved photocatalytic hydrogen evolution by modulating the internal electric field. ACS Appl. Mater. Interfaces 2021, 13, 39491–39500.

[31]

Bai, J. X.; Chen, W. L.; Hao, L.; Shen, R. C.; Zhang, P.; Li, N.; Li, X. Assembling Ti3C2 MXene into ZnIn2S4-NiSe2 S-scheme heterojunction with multiple charge transfer channels for accelerated photocatalytic H2 generation. Chem. Eng. J. 2022, 447, 137488.

[32]

Yang, Z. F.; Xia, X. N.; Yang, W. W.; Wang, L. L.; Liu, Y. T. Photothermal effect and continuous hot electrons injection synergistically induced enhanced molecular oxygen activation for efficient selective oxidation of benzyl alcohol over plasmonic W18O49/ZnIn2S4 photocatalyst. Appl. Catal. B: Environ. 2021, 299, 120675.

[33]

Feng, C. Y.; Tang, L.; Deng, Y. C.; Wang, J. J.; Tang, W. W.; Liu, Y. N.; Chen, Z. M.; Yu, J. F.; Wang, J. J.; Liang, Q. H. Synthesis of branched WO3@W18O49 homojunction with enhanced interfacial charge separation and full-spectrum photocatalytic performance. Chem. Eng. J. 2020, 389, 124474.

[34]

Li, C. Q.; Du, X.; Jiang, S.; Liu, Y.; Niu, Z. L.; Liu, Z. Y.; Yi, S. S.; Yue, X. Z. Constructing direct Z-scheme heterostructure by enwrapping ZnIn2S4 on CdS hollow cube for efficient photocatalytic H2 generation. Adv. Sci. 2022, 9, 2201773.

[35]

Chen, S. B.; Hau Ng, Y.; Liao, J. H.; Gao, Q. Z.; Yang, S. Y.; Peng, F.; Zhong, X. H.; Fang, Y. P.; Zhang, S. S. FeCo alloy@N-doped graphitized carbon as an efficient cocatalyst for enhanced photocatalytic H2 evolution by inducing accelerated charge transfer. J. Energy Chem. 2021, 52, 92–101.

[36]

Chowdhury, A.; Balu, S.; Venkatesvaran, H.; Chen, S. W.;  Yang, T. C. K. Facile construction of CuFe2O4/p-g-C3N4 p–n heterojunction with boosted photocatalytic activity and sustainability for organic degradation reactions under visible-light. Surf. Interfaces 2022, 34, 102329.

[37]

Bai, J. X.; Shen, R. C.; Jiang, Z. M.; Zhang, P.; Li, Y. J.; Li, X. Integration of 2D layered CdS/WO3 S-scheme heterojunctions and metallic Ti3C2 MXene-based Ohmic junctions for effective photocatalytic H2 generation. Chin. J. Catal. 2022, 43, 359–369.

[38]

Xue, W. H.; Sun, H. L.; Hu, X. Y.; Bai, X.; Fan, J.; Liu, E. Z. UV–VIS–NIR-induced extraordinary H2 evolution over W18O49/Cd0.5Zn0.5S: Surface plasmon effect coupled with S-scheme charge transfer. Chin. J. Catal. 2022, 43, 234–245

[39]

Guo, Z. R.; Zhang, X.; Li, X. Y.; Cui, C.; Zhang, Z. L.; Li, H. S.; Zhang, D. X.; Li, J. Y.; Xu, X. Y.; Zhang, J. T. Enhanced charge separation by incomplete calcination modified co-doped TiO2 nanoparticle for isothiazolinone photocatalytic degradation. Nano Res. 2024, 17, 4834–4843.

[40]

Wang, H. Y.; Niu, R. R.; Liu, J. H.; Guo, S.; Yang, Y. P.; Liu, Z. Y.; Li, J. Electrostatic self-assembly of 2D/2D CoWO4/g-C3N4 p–n heterojunction for improved photocatalytic hydrogen evolution: Built-in electric field modulated charge separation and mechanism unveiling. Nano Res. 2022, 15, 6987–6998.

[41]

Zhang, N.; Jalil, A.; Wu, D. X.; Chen, S. M.; Liu, Y. F.; Gao, C.; Ye, W.; Qi, Z. M.; Ju, H. X.; Wang, C. M. et al. Refining defect states in W18O49 by Mo doping: A strategy for tuning N2 activation towards solar-driven nitrogen fixation. J. Am. Chem. Soc. 2018, 140, 9434–9443.

[42]

Qi, Y.; Zhang, J. W.; Kong, Y.; Zhao, Y.; Chen, S. S.; Li, D.; Liu, W.; Chen, Y. F.; Xie, T. F.; Cui, J. Y. et al. Unraveling of cocatalysts photodeposited selectively on facets of BiVO4 to boost solar water splitting. Nat. Commun. 2022, 13, 484.

[43]

Luo, D.; Peng, L.; Wang, Y.; Lu, X. Y.; Yang, C.; Xu, X. S.; Huang, Y. C.; Ni, Y. H. Highly efficient photocatalytic water splitting utilizing a WO3− x /ZnIn2S4 ultrathin nanosheet Z-scheme catalyst. J. Mater. Chem. A 2021, 9, 908–914.

[44]

Zhou, Q.; Wang, X. Y.; Tan, X. J.; Zhang, Q. H.; Yang, H.; Xing, T.; Wang, M. Q.; Wu, M. B.; Wu, W. T. Selective photocatalytic oxidation of methane to C1 oxygenates by regulating sizes and facets over Au/ZnO. Nano Res. 2024, 17, 3810–3818.

[45]

Dang, X. Y.; Xie, M. S.; Dai, F. F.; Guo, J. N.; Liu, J.; Lu, X. Q. Ultrathin 2D/2D ZnIn2S4/g-C3N4 nanosheet heterojunction with atomic-level intimate interface for photocatalytic hydrogen evolution under visible light. Adv. Mater. Interfaces 2021, 8, 2100151.

[46]

Pu, Y. C.; Fan, H. C.; Liu, T. W.; Chen, J. W. Methylamine lead bromide perovskite/protonated graphitic carbon nitride nanocomposites: Interfacial charge carrier dynamics and photocatalysis. J. Mater. Chem. A 2017, 5, 25438–25449.

[47]

Ke, X. C.; Zhang, J. F.; Dai, K.; Fan, K.; Liang, C. H. Integrated S-scheme heterojunction of amine-functionalized 1D CdSe nanorods anchoring on ultrathin 2D SnNb2O6 nanosheets for robust solar-driven CO2 conversion. Sol. RRL 2021, 5, 2000805.

[48]

Guo, Y. C.; Mao, L.; Tang, Y.; Shang, Q. Q.; Cai, X. Y.; Zhang, J. Y.; Hu, H. L.; Tan, X.; Liu, L. Q.; Wang, H. Y. et al. Concentrating electron and activating H–OH bond of absorbed water on metallic NiCo2S4 boosting photocatalytic hydrogen evolution. Nano Energy 2022, 95, 107028.

[49]

Chen, W.; Chang, L.; Ren, S. B.; He, Z. C.; Huang, G. B.; Liu, X. H. Direct Z-scheme 1D/2D WO2.72/ZnIn2S4 hybrid photocatalysts with highly-efficient visible-light-driven photodegradation towards tetracycline hydrochloride removal. J. Hazard. Mater. 2020, 384, 121308.

[50]

Liu, H. Y.; Niu, C. G.; Guo, H.; Huang, D. W.; Liang, C.; Yang, Y. Y.; Tang, N.; Zhang, X. G. Integrating the Z-scheme heterojunction and hot electrons injection into a plasmonic-based Zn2In2S5/W18O49 composite induced improved molecular oxygen activation for photocatalytic degradation and antibacterial performance. J. Colloid Interface Sci. 2022, 610, 953–969.

[51]

Deng, Y. C.; Feng, C. Y.; Tang, L.; Zhou, Y. Y.; Chen, Z. M.; Feng, H. P.; Wang, J. J.; Yu, J. F.; Liu, Y. N. Ultrathin low dimensional heterostructure composites with superior photocatalytic activity: Insight into the multichannel charge transfer mechanism. Chem. Eng. J. 2020, 393, 124718.

Nano Research
Cite this article:
Liu X, Liu E, Wang Z, et al. Engineering S-scheme W18O49/ZnIn2S4 heterojunction by CoxP nanoclusters for enhanced charge transfer capability and solar hydrogen evolution. Nano Research, 2024, https://doi.org/10.1007/s12274-024-6773-4
Topics:

244

Views

0

Crossref

0

Web of Science

0

Scopus

0

CSCD

Altmetrics

Received: 01 April 2024
Revised: 09 May 2024
Accepted: 16 May 2024
Published: 24 June 2024
© Tsinghua University Press 2024
Return