AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article | Online First

An ultra-sensitive biosensor for circulating microRNA detection with Fe single-atom enhanced cathodic luminol-O2 electrochemiluminescence

Yudie Sun1,2,§Yunxiang Han1,§Mingyue Wang1Mingfu Ye1,3Konglin Wu1( )Kui Zhang1( )
School of Chemistry and Chemical Engineering, Anhui University of Technology, Ma'anshan 243032, China
Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE, Qingdao University of Science and Technology, Qingdao 266042, China
Engineering Research Center of Biofilm Water Purification and Utilization Technology of Ministry of Education, Anhui University of Technology, Ma'anshan 243032, China

§ Yudie Sun and Yunxiang Han contributed equally to this work.

Show Author Information

Graphical Abstract

Abstract

Circulating microRNAs (miRNAs) play a pivotal role in the occurrence and development of acute myocardial infarction (AMI), and precise detection of them holds significant clinical implications. The development of luminol-based luminophores in the field of electrochemiluminescence (ECL) for miRNA detection has been significant, while their effectiveness is hindered by the instability of co-reactant hydrogen peroxide (H2O2). In this work, an iron single-atom catalyst (Fe-PNC) was employed for catalyzing the luminol-O2 ECL system to achieve ultra-sensitive detection of myocardial miRNA. Target miRNA triggers a hybridization chain reaction (HCR), resulting in the generation of a DNA product featuring multiple sticky ends that facilitate the attachment of Fe-PNC probes to the electrode surface. The Fe-PNC catalyst exhibits high promise and efficiency for the oxygen reduction reaction (ORR) in electrochemical energy conversion systems. The resulting ECL biosensor allowed ultrasensitive detection of myocardial miRNA with a low detection limit of 0.42 fM and a wide linear range from 1 fM to 1.0 nM. Additionally, it demonstrates exceptional performance when evaluated using serum samples collected from patients with AMI. This work expands the application of single-atom catalysis in ECL sensing and introduces novel perspectives for utilizing ECL in disease diagnosis.

Electronic Supplementary Material

Download File(s)
6767_ESM.pdf (1.4 MB)

References

[1]

Tirdea, C.; Hostiuc, S.; Moldovan, H.; Scafa-Udriste, A. Identification of risk genes associated with myocardial infarction-big data analysis and literature review. Int. J. Mol. Sci. 2022, 23, 15008.

[2]

Chang, L. L.; Wang, Z. J.; Ma, F. F.; Tran, B.; Zhong, R.; Xiong, Y.; Dai, T.; Wu, J.; Xin, X. M.; Guo, W. et al. ZYZ-803 mitigates endoplasmic reticulum stress-related necroptosis after acute myocardial infarction through downregulating the RIP3-CaMKII signaling pathway. Oxid. Med. Cell. Longev. 2019, 2019, 6173685.

[3]

Chen, C.; Ponnusamy, M.; Liu, C. Y.; Gao, J. N.; Wang, K.; Li, P. F. MicroRNA as a therapeutic target in cardiac remodeling. Biomed Res. Int. 2017, 2017, 1278436.

[4]

Zhang, L.; Zhang, Y.; Zhao, Y. F.; Wang, Y.; Ding, H.; Xue, S.; Li, P. F. Circulating miRNAs as biomarkers for early diagnosis of coronary artery disease. Expert Opin. Ther. Pat. 2018, 28, 591–601.

[5]

Zhang, X.; Tian, L.; Sun, Z.; Wu, Q.; Shan, X. Y.; Zhao, Y. J.; Chen, R. Z.; Lu, J. A molecule-imprinted electrochemiluminescence sensor based on self-accelerated Ru(bpy)32+@ZIF-7 for ultra-sensitive detection of procymidone. Food Chem. 2022, 391, 133235.

[6]

Liu, S. S.; Yuan, H. X.; Bai, H. T.; Zhang, P. B.; Lv, F. T.; Liu, L. B.; Dai, Z. H.; Bao, J. C.; Wang, S. Electrochemiluminescence for electric-driven antibacterial therapeutics. J. Am. Chem. Soc. 2018, 140, 2284–2291.

[7]

Xiang, H.; He, S. Y.; Zhao, G.; Zhang, M. T.; Lin, J.; Yang, L. N.; Liu, H. L. Gold nanocluster-based ratiometric probe with surface structure regulation-triggered sensing of hydrogen sulfide in living organisms. ACS Appl. Mater. Interfaces 2023, 15, 12643–12652.

[8]

Zhong, W. Y.; Liang, Z. H.; Zhao, H.; Wang, P. L.; Li, Z. R.; Shi, J. W.; Ma, Q. ECL resonance energy transfer-regulated “off-on” mode biosensor for the detection of miRNA-150-5p in triple negative breast cancer. Biosens. Bioelectron. 2023, 240, 115663.

[9]

Gu, W. L.; Wang, X. S.; Wen, J.; Cao, S. Y.; Jiao, L.; Wu, Y.; Wei, X. Q.; Zheng, L. R.; Hu, L. Y.; Zhang, L. Z. et al. Modulating oxygen reduction behaviors on nickel single-atom catalysts to probe the electrochemiluminescence mechanism at the atomic level. Anal. Chem. 2021, 93, 8663–8670.

[10]

Gu, W. L.; Wang, H. J.; Jiao, L.; Wu, Y.; Chen, Y. X.; Hu, L. Y.; Gong, J. M.; Du, D.; Zhu, C. Z. Single-atom iron boosts electrochemiluminescence. Angew. Chem., Int. Ed. 2020, 59, 3534–3538.

[11]

Nie, Y. X.; Wang, P. L.; Ma, Q.; Su, X. G. Confined gold single atoms-MXene heterostructure-based electrochemiluminescence functional material and its sensing application. Anal. Chem. 2022, 94, 11016–11022.

[12]

Yang, L.; Jia, Y.; Wu, D.; Zhang, Y.; Ju, H. X.; Du, Y.; Ma, H. M.; Wei, Q. Synthesis and application of CeO2/SnS2 heterostructures as a highly efficient coreaction accelerator in the luminol-dissolved O2 system for ultrasensitive biomarkers immunoassay. Anal. Chem. 2019, 91, 14066–14073.

[13]

Jiao, L.; Xu, W. Q.; Wu, Y.; Yan, H. Y.; Gu, W. L.; Du, D.; Lin, Y. H.; Zhu, C. Z. Single-atom catalysts boost signal amplification for biosensing. Chem. Soc. Rev. 2021, 50, 750–765.

[14]

Wang, M. Y.; Ye, M. F.; Wang, J. Y.; Xu, Y.; Wang, Z. D.; Tong, X. Y.; Han, X. Y.; Zhang, K.; Wang, W. H.; Wu, K. L. et al. Recent advances and applications of single atom catalysts based electrochemical sensors. Nano Res. 2024, 17, 2994–3013.

[15]

Ji, S. F.; Chen, Y. J.; Wang, X. L.; Zhang, Z. D.; Wang, D. S.; Li, Y. D. Chemical Synthesis of Single Atomic Site Catalysts. Chem. Rev. 2020, 120, 11900–11955.

[16]

Chen, R. Z.; Chen, S. H.; Wang, L. Q.; Wang, D. S. Nanoscale metal particle modified single-atom catalyst: Synthesis, characterization, and application. Adv. Mater. 2024, 36, 2304713.

[17]

Zhuang, Z. C.; Xia, L. X.; Huang, J. Z.; Zhu, P.; Li, Y.; Ye, C. L.; Xia, M. G.; Yu, R. H.; Lang, Z. Q.; Zhu, J. X. et al. Continuous modulation of electrocatalytic oxygen reduction activities of single-atom catalysts through p-n junction rectification. Angew. Chem., Int. Ed. 2023, 62, e202212335.

[18]

Ma, Y. C.; Zhang, Y.; Gao, J. Q.; Ouyang, H.; He, Y.; Fu, Z. F. PEGylated Ni single-atom catalysts as ultrasensitive electrochemiluminescent probes with favorable aqueous dispersibility for assaying drug-resistant pathogens. Anal. Chem. 2022, 94, 14047–14053.

[19]

Xu, W. Q.; Wu, Y.; Wang, X. S.; Qin, Y.; Wang, H. J.; Luo, Z.; Wen, J.; Hu, L. Y.; Gu, W. L.; Zhu, C. Z. Bioinspired single-atom sites enable efficient oxygen activation for switching anodic/cathodic electrochemiluminescence. Angew. Chem., Int. Ed. 2023, 62, e202304625.

[20]

Gan, T.; Wang, D. S. Atomically dispersed materials: Ideal catalysts in atomic era. Nano Res. 2024, 17, 18–38.

[21]

Han, A. L.; Sun, W. M.; Wan, X.; Cai, D. D.; Wang, X. J.; Li, F.; Shui, J. L.; Wang, D. S. Construction of Co4 atomic clusters to enable Fe-N4 motifs with highly active and durable oxygen reduction performance. Angew. Chem., Int. Ed. 2023, 62, e202303185.

[22]

Yang, J. R.; Li, W. H.; Xu, K. N.; Tan, S. D.; Wang, D. S.; Li, Y. D. Regulating the tip effect on single-atom and cluster catalysts: Forming reversible oxygen species with high efficiency in chlorine evolution reaction. Angew. Chem., Int. Ed. 2022, 61, e202200366.

[23]

Lei, Y. P.; Wang, Y. C.; Liu, Y.; Song, C. Y.; Li, Q.; Wang, D. S.; Li, Y. D. Designing atomic active centers for hydrogen evolution electrocatalysts. Angew. Chem., Int. Ed. 2020, 59, 20794–20812.

[24]

Zhu, C. X.; Yang, J. R.; Zhang, J. W.; Wang, X. Q.; Gao, Y.; Wang, D. S.; Pan, H. G. Single-atom materials: The application in energy conversion. Interdiscip. Mater. 2024, 3, 74–86.

[25]

Wang, Y.; Wu, J.; Tang, S. H.; Yang, J. R.; Ye, C. L.; Chen, J.; Lei, Y. P.; Wang, D. S. Synergistic Fe-Se atom pairs as bifunctional oxygen electrocatalysts boost low-temperature rechargeable Zn-Air battery. Angew. Chem., Int. Ed. 2023, 62, e202219191.

[26]

Bushira, F. A.; Wang, P.; Wang, Y.; Hou, S. P.; Diao, X. K.; Li, H. J.; Zheng, L. R.; Jin, Y. D. Plasmon-boosted Fe, Co dual single-atom catalysts for ultrasensitive luminol-dissolved O2 electrochemiluminescence detection of prostate-specific antigen. Anal. Chem. 2022, 94, 9758–9765.

[27]

Chen, T. T.; Zhou, D. D.; Hou, S. H.; Li, Y.; Liu, Y.; Zhang, M. L.; Zhang, G. B.; Xu, H. Designing hierarchically porous single atoms of Fe-N5 catalytic sites with high oxidase-like activity for sensitive detection of organophosphorus pesticides. Anal. Chem. 2022, 94, 15270–15279.

[28]

Zou, R.; Xie, R. Y.; Peng, Y. G.; Guan, W. J.; Lin, Y. J.; Lu, C. Ag-O-Co interface modulation-amplified luminol cathodic electrogenerated chemiluminescence. Anal. Chem. 2022, 94, 4813–4820.

[29]

Shang, L.; Yu, H. J.; Huang, X.; Bian, T.; Shi, R.; Zhao, Y. F.; Waterhouse, G. I. N.; Wu, L. Z.; Tung, C. H.; Zhang, T. R. Well-dispersed ZIF-derived Co, N-Co-doped carbon nanoframes through mesoporous-silica-protected calcination as efficient oxygen reduction electrocatalysts. Adv. Mater. 2016, 28, 1668–1674.

[30]

Liu, C.; Huang, X. D.; Wang, J.; Song, H.; Yang, Y. N.; Liu, Y.; Li, J. S.; Wang, L. J.; Yu, C. Z. Hollow mesoporous carbon nanocubes: Rigid-interface-induced outward contraction of metal-organic frameworks. Adv. Funct. Mater. 2018, 28, 1705253.

[31]

Wang, C. H.; Kim, J.; Tang, J.; Kim, M.; Lim, H.; Malgras, V.; You, J.; Xu, Q.; Li, J. S.; Yamauchi, Y. New strategies for novel MOF-derived carbon materials based on nanoarchitectures. Chem 2020, 6, 19–40.

[32]

Xiong, C.; Tian, L.; Xiao, C. C.; Xue, Z. G.; Zhou, F. Y.; Zhou, H.; Zhao, Y. F.; Chen, M.; Wang, Q. P.; Qu, Y. T. et al. Construction of highly accessible single Co site catalyst for glucose detection. Sci. Bull. 2020, 65, 2100–2106.

[33]

Zou, Z.; Shi, Z. Z.; Wu, J. G.; Wu, C.; Zeng, Q. X.; Zhang, Y. Y.; Zhou, G. D.; Wu, X. S.; Li, J.; Chen, H. et al. Atomically dispersed Co to an end-adsorbing molecule for excellent biomimetically and prime sensitively detecting O2·- released from living cells. Anal. Chem. 2021, 93, 10789–10797.

[34]

Hu, G. X.; Rao, Q. H.; Li, G.; Zheng, Y.; Liu, Y. H.; Guo, C. X.; Li, F. H.; Hu, F. X.; Yang, H. B.; Chen, F. A single-atom cobalt integrated flexible sensor for simultaneous detection of dihydroxybenzene isomers. Nanoscale 2023, 15, 9484–9495.

[35]

Leonard, N.; Ju, W.; Sinev, I.; Steinberg, J.; Luo, F.; Varela, A. S.; Roldan Cuenya, B.; Strasser, P. The chemical identity, state and structure of catalytically active centers during the electrochemical CO2 reduction on porous Fe-nitrogen-carbon (Fe-N-C) materials. Chem. Sci. 2018, 9, 5064–5073.

[36]

Wang, Q. P.; Liu, T. Y.; Chen, K.; Wu, D.; Chen, C.; Chen, M.; Ma, X. H.; Xu, J.; Yao, T.; Li, Y. F. et al. Precise regulation of iron spin states in single Fe-N4 sites for efficient peroxidase-mimicking catalysis. Small 2022, 18, 2204015.

[37]

Liang, Y.; Zhao, P.; Zheng, J. L.; Chen, Y. Y.; Liu, Y. Y.; Zheng, J.; Luo, X. G.; Huo, D. Q.; Hou, C. J. Fe single-atom electrochemical sensors for H2O2 produced by living cells. ACS Appl. Nano Mater. 2022, 5, 11852–11863.

[38]

Hu, B. T.; Huang, A. J.; Zhang, X. J.; Chen, Z.; Tu, R. Y.; Zhu, W.; Zhuang, Z. B.; Chen, C.; Peng, Q.; Li, Y. D. Atomic Co/Ni dual sites with N/P-coordination as bifunctional oxygen electrocatalyst for rechargeable zinc-air batteries. Nano Res. 2021, 14, 3482–3488.

[39]

Xiong, Y.; Li, H. C.; Liu, C. W.; Zheng, L. R.; Liu, C.; Wang, J. O.; Liu, S. J.; Han, Y. H.; Gu, L.; Qian, J. et al. Single-atom Fe catalysts for fenton-like reactions: Roles of different N species. Adv. Mater. 2022, 34, 2110653.

[40]

Shi, L. L.; Peng, P.; Du, Y.; Li, T. Programmable i-motif DNA folding topology for a pH-switched reversible molecular sensing device. Nucleic Acids Res. 2017, 45, 4306–4314.

[41]

Hu, W. X.; Chang, Y. Y.; Huang, J. Q.; Chai, Y. Q.; Yuan, R. Tetrahedral DNA nanostructure with multiple target-recognition domains for ultrasensitive electrochemical detection of mucin 1. Anal. Chem. 2022, 94, 6860–6865.

[42]

Yao, T.; Kong, L. Q.; Liu, Y.; Li, H.; Yuan, R.; Chai, Y. Q. Highly efficient quadruped DNA walker guided by ordered DNA tracks for rapid and ultrasensitive electrochemical detection of miRNA-21. Anal. Chem. 2022, 94, 12256–12262.

[43]

Xia, H. Y.; Zheng, X. L.; Li, J.; Wang, L. G.; Xue, Y.; Peng, C.; Han, Y. C.; Wang, Y.; Guo, S. J.; Wang, J. et al. Identifying luminol electrochemiluminescence at the cathode via single-atom catalysts tuned oxygen reduction reaction. J. Am. Chem. Soc. 2022, 144, 7741–7749.

[44]

Wang, Y. F.; Guo, W. L.; Yang, Q.; Su, B. Electrochemiluminescence self-interference spectroscopy with vertical nanoscale resolution. J. Am. Chem. Soc. 2020, 142, 1222–1226.

[45]

Wei, X. Q.; Song, S. J.; Song, W. Y.; Xu, W. Q.; Jiao, L.; Luo, X.; Wu, N. N.; Yan, H. Y.; Wang, X. S.; Gu, W. L. et al. Fe3C-assisted single atomic Fe sites for sensitive electrochemical biosensing. Anal. Chem. 2021, 93, 5334–5342

Nano Research
Cite this article:
Sun Y, Han Y, Wang M, et al. An ultra-sensitive biosensor for circulating microRNA detection with Fe single-atom enhanced cathodic luminol-O2 electrochemiluminescence. Nano Research, 2024, https://doi.org/10.1007/s12274-024-6767-2
Topics:

454

Views

0

Crossref

0

Web of Science

0

Scopus

0

CSCD

Altmetrics

Received: 13 March 2024
Revised: 29 April 2024
Accepted: 15 May 2024
Published: 06 June 2024
© Tsinghua University Press 2024
Return