AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Ultra-flexible all-in-one anti-freeze photothermally enhanced supercapacitors

Yongxin LuKeke LiYan-Yan Song( )Zhida Gao( )
Condense matter of physics, College of Science, Northeazistern University, Shenyang 110004, China
Show Author Information

Graphical Abstract

An all-in-one, flexible, anti-freeze hydrogel device was prepared. The ultra-flexible device satisfies various needs in different usage scenarios even at –30 °C. Under solar irradiation, electrochemical performance was boosted to 287.1% at –20 °C.

Abstract

Wearable electronics powered by flexible energy storage devices have captured global attention. Under low-temperature conditions, unfortunately, solidification of flexible hydrogel electrolyte and decreased pseudo-capacity of these devices largely hamper their practical use. In this study, photothermally-active Prussian blue (PB) was introduced onto poly(3,4-ethylenedioxythiophene)/polyacrylamide (PEDOT/PAM) networks to address the challenges of electrolyte solidification and degraded pseudo-capacitance for flexible all-in-one device at low temperatures. The as-constructed PB/PEDOT/PAM hydrogel device delivers stable electrochemical performance and remarkable mechanical property with 1652% elongation. Importantly, this hydrogel device well retains its flexibility in cold environment with a freezing point below −30 °C. The incorporation of PB extends the voltage range to 1.5 V as a single device, thus significantly enhancing the electrochemical performance as an all-in-one integrated device. Benefitting from the outstanding photo-to-thermal conversion ability of embedded PB nanocubes, the temperature of the assembled all-in-one PB/PEDOT/PAM device increased from −20 to 17.7 °C after solar-light irradiation for only 5 min. Moreover, the degraded pseudo-capacitance was subsequently boosted to 287.1% of its original capacitance at −20 °C. This study establishes a connection between flexible all-solid-state hydrogel devices and photothermally enhanced pseudo-capacitors in freezing environments, thereby expanding the potential applications of multi-functional pseudo-capacitors.

Electronic Supplementary Material

Download File(s)
6743_ESM.pdf (3.9 MB)

References

[1]

Larson, C.; Peele, B.; Li, S.; Robinson, S.; Totaro, M.; Beccai, L.; Mazzolai, B.; Shepherd, R. Highly stretchable electroluminescent skin for optical signaling and tactile sensing. Science 2016, 351, 1071–1074.

[2]

Matsuhisa, N.; Kaltenbrunner, M.; Yokota, T.; Jinno, H.; Kuribara, K.; Sekitani, T.; Someya, T. Printable elastic conductors with a high conductivity for electronic textile applications. Nat. Commun. 2015, 6, 7461.

[3]

Zhao, J. H.; Wang, H. Q.; Cai, Y. H.; Zhao, J. J.; Gao, Z. D.; Song, Y. Y. The challenges and opportunities for TiO2 nanostructures in gas sensing. ACS Sens. 2024, 9, 1644–1655.

[4]

Wang, Z. P.; Cheng, J. L.; Zhou, J. W.; Zhang, J. X.; Huang, H.; Yang, J.; Li, Y. C.; Wang, B. All-climate aqueous fiber-shaped supercapacitors with record areal energy density and high safety. Nano Energy 2018, 50, 106–117.

[5]

Chen, M. Z.; Zhang, Y. Y.; Xing, G. C.; Chou, S. L.; Tang, Y. X. Electrochemical energy storage devices working in extreme conditions. Energy Environ. Sci. 2021, 14, 3323–3351.

[6]

Korenblit, Y.; Kajdos, A.; West, W. C.; Smart, M. C.; Brandon, E. J.; Kvit, A.; Jagiello, J.; Yushin, G . In situ studies of ion transport in microporous supercapacitor electrodes at ultralow temperatures. Adv. Funct. Adv. Funct. Mater. 2012, 22, 1655–1662.

[7]

Yi, F.; Ren, H. Y.; Dai, K. R.; Wang, X. F.; Han, Y. Z.; Wang, K. X.; Li, K.; Guan, B. L.; Wang, J.; Tang, M. et al. Solar thermal-driven capacitance enhancement of supercapacitors. Energy Environ. Sci. 2018, 11, 2016–2024.

[8]

Gao, H. N.; Zhao, Z. G.; Cai, Y. D.; Zhou, J. J.; Hua, W. D.; Chen, L.; Wang, L.; Zhang, J. Q.; Han, D.; Liu, M. J. et al. Adaptive and freeze-tolerant heteronetwork organohydrogels with enhanced mechanical stability over a wide temperature range. Nat. Commun. 2017, 8, 15911.

[9]

Rong, Q. F.; Lei, W. W.; Huang, J.; Liu, M. J. Low temperature tolerant organohydrogel electrolytes for flexible solid-state supercapacitors. Adv. Energy Mater. 2018, 8, 1801967.

[10]

Guo, J. L.; Liu, X.; Zhao, J. J.; Xu, H. J.; Gao, Z. D.; Wu, Z. Q.; Song, Y. Y. Rational design of mesoporous chiral MOFs as reactive pockets in nanochannels for enzyme-free identification of monosaccharide enantiomers. Chem. Sci. 2023, 14, 1742–1751.

[11]

Li, Z. W.; Chen, D. H.; An, Y. F.; Chen, C. L.; Wu, L. Y.; Chen, Z. J.; Sun, Y.; Zhang, X. G. Flexible and anti-freezing quasi-solid-state zinc ion hybrid supercapacitors based on pencil shavings derived porous carbon. Energy Stor. Mater. 2020, 28, 307–314.

[12]

Mo, F. N.; Liang, G. J.; Meng, Q. Q.; Liu, Z. X.; Li, H. F.; Fan, J.; Zhi, C. Y. A flexible rechargeable aqueous zinc manganese-dioxide battery working at −20 °C. Energy Environ. Sci. 2019, 12, 706–715.

[13]

Xu, J.; Yuan, N. Y.; Razal, J. M.; Zheng, Y. P.; Zhou, X. S.; Ding, J. N.; Cho, K.; Ge, S. H.; Zhang, R. J.; Gogotsi, Y. et al. Temperature-independent capacitance of carbon-based supercapacitor from −100 to 60 °C. Energy Stor. Mater. 2019, 22, 323–329.

[14]

Wang, X.; Xu, J.; Razal, J. M.; Yuan, N. Y.; Zhou, X. S.; Wang, X. H.; Ding, J. N.; Qin, S.; Ge, S. H.; Gogotsi, Y. Unimpeded migration of ions in carbon electrodes with bimodal pores at an ultralow temperature of −100 °C. J. Mater. Chem. A 2019, 7, 16339–16346.

[15]

Huang, P. H.; Pech, D.; Lin, R. Y.; McDonough, J. K.; Brunet, M.; Taberna, P. L.; Gogotsi, Y.; Simon, P. On-chip micro-supercapacitors for operation in a wide temperature range. Electrochem. Commun. 2013, 36, 53–56.

[16]

Tsai, W. Y.; Lin, R. Y.; Murali, S.; Zhang, L. L.; McDonough, J. K.; Ruoff, R. S.; Taberna, P. L.; Gogotsi, Y.; Simon, P. Outstanding performance of activated graphene based supercapacitors in ionic liquid electrolyte from −50 to 80 °C. Nano Energy 2013, 2, 403–411.

[17]

Lu, Y. X.; Xu, J. W.; Zhao, C. X.; Gao, Z. D.; Song, Y. Y. Boosting the local temperature of hybrid prussian blue/NiO nanotubes by solar light: Effect on energy storage. ACS Sustainable Chem. Eng. 2021, 9, 11837–11846.

[18]

Long, L. Z.; Ding, Y. Y.; Liang, N. N.; Liu, J.; Liu, F. C.; Huang, S.; Meng, Y. Z. A carbon-free and free-standing cathode from mixed-phase TiO2 for photo-assisted Li-CO2 battery. Small 2023, 19, 2300519.

[19]

Xu, J. W.; Liang, C. C.; Gao, Z. D.; Song, Y. Y. Construction of nanoreactors on TiO2 nanotube arrays as a POCT device for sensitive colorimetric detection. Chin. Chem. Lett. 2023, 34, 107863.

[20]

Yang, L. L.; Feng, J. J.; Wang, J. N.; Gao, Z. D.; Xu, J. W.; Mei, Y.; Song, Y. Y. Engineering large-scaled electrochromic semiconductor films as reproductive SERS substrates for operando investigation at the solid/liquid interfaces. Chin. Chem. Lett. 2022, 33, 5169–5173.

[21]

Jin, X. T.; Song, L.; Yang, H. S.; Dai, C. L.; Xiao, Y. K.; Zhang, X. Q.; Han, Y. Y.; Bai, C. C.; Lu, B.; Liu, Q. W. et al. Stretchable supercapacitor at −30 °C. Energy Environ. Sci. 2021, 14, 3075–3085.

[22]

Ivanko, I.; Pánek, J.; Svoboda, J.; Zhigunov, A.; Tomšík, E. Tuning the photoluminescence and anisotropic structure of PEDOT. J. Mater. Chem. C 2019, 7, 7013–7019.

[23]

Fernandez-Martin, F.; Fernandez-Pierola, I.; Horta, A. Glass transition temperature and heat capacity of heterotacticlike PMMA. J. Polym. Sci. Polym. Phys. Ed. 1981, 19, 1353–1363.

[24]

Nešpůrek, S.; Kuberský, P.; Polanský, R.; Trchová, M.; Šebera, J.; Sychrovský, V. Raman spectroscopy and DFT calculations of PEDOT: PSS in a dipolar field. Phys. Chem. Chem. Phys. 2022, 24, 541–550.

[25]

Xu, J. W.; Zhang, Y.; Zhai, T. T.; Kuang, Z. Y.; Li, J.; Wang, Y. M.; Gao, Z. D.; Song, Y. Y.; Xia, X. H. Electrochromic-tuned plasmonics for photothermal sterile window. ACS Nano 2018, 12, 6895–6903.

[26]

Liu, R. Q.; Liang, S. M.; Tang, X. Z.; Yan, D.; Li, X. F.; Yu, Z. Z. Tough and highly stretchable graphene oxide/polyacrylamide nanocomposite hydrogels. J. Mater. Chem. 2012, 22, 14160–14167.

[27]

Ghosh, P.; Chakrabarti, A.; Siddhanta, S. K. Studies on stable aqueous polyaniline prepared with the use of polyacrylamide as the water soluble support polymer. Eur. Polym. J. 1999, 35, 803–813.

[28]

Liu, Y.; He, D. D.; Cheng, Y. J.; Li, L.; Lu, Z. S.; Liang, R.; Fan, Y. Y.; Qiao, Y.; Chou, S. L. A heterostructure coupling of bioinspired, adhesive polydopamine, and porous Prussian Blue nanocubics as cathode for high-performance sodium-ion battery. Small 2020, 16, 1906946.

[29]

Xu, J.; Qu, K. Z.; Zhao, J. J.; Jian, X. X.; Gao, Z. D.; Xu, J. W.; Song, Y. Y. In situ monitoring of the “point discharge” induced antibacterial process by the onsite formation of a Raman probe. Anal. Chem. 2020, 92, 2323–2330

[30]

Zhou, Z. Y.; Li, Q. L.; Yuan, L. Q.; Tang, L.; Wang, X. N.; He, B.; Man, P.; Li, C. W.; Xie, L. Y.; Lu, W. B. et al. Achieving ultrahigh-energy-density in flexible and lightweight all-solid-state internal asymmetric tandem 6.6 V all-in-one supercapacitors. Energy Stor. Mater. 2020, 25, 893–902.

[31]

Cabán-Acevedo, M.; Stone, M. L.; Schmidt, J. R.; Thomas, J. G.; Ding, Q.; Chang, H. C.; Tsai, M. L.; He, J. H.; Jin, S. Efficient hydrogen evolution catalysis using ternary pyrite-type cobalt phosphosulphide. Nat. Mater. 2015, 14, 1245–1251.

[32]

Zhu, K. H.; Han, X. D.; Ye, S. F.; Cui, P. X.; Dou, L. Y.; Ma, W. B.; Heng-Sha; Tao, X. Y.; Wei, X. Y. Flexible all-in-one supercapacitors enabled by self-healing and anti-freezing polymer hydrogel electrolyte. J. Energy Storage 2022, 53, 105096.

[33]

Han, L.; Li, Y. Q.; Chen, C.; Liu, L. K.; Lu, Z. C. Multifunctional enhanced energy density of flexible wide-temperature supercapacitors based on MXene/PANI conductive hydrogel. Chem. Eng. J. 2024, 485, 149951.

[34]

Wang, X.; Wang, Y. M.; Liu, D. D.; Li, X. L.; Xiao, H. H.; Ma, Y.; Xu, M.; Yuan, G. H.; Chen, G. R. Opening MXene ion transport channels by intercalating PANI nanoparticles from the self-assembly approach for high volumetric and areal energy density supercapacitors. ACS Appl. Mater. Interfaces 2021, 13, 30633–30642.

[35]

Cao, S. Q.; Zhao, T. K.; Li, Y. T.; Yang, L.; Ahmad, A.; Jiang, T.; Shu, Y.; Jing, Z. M.; Luo, H. J.; Lu, X. F. et al. Fabrication of PANI@Ti3C2T x /PVA hydrogel composite as flexible supercapacitor electrode with good electrochemical performance. Ceram. Int. 2022, 48, 15721–15728.

[36]

Yuan, T.; Zhang, Z.; Liu, Q.; Liu, X. T.; Miao, Y. N.; Yao, C. L. MXene (Ti3C2T x )/cellulose nanofiber/polyaniline film as a highly conductive and flexible electrode material for supercapacitors. Carbohydr. Polym. 2023, 304, 120519.

[37]

Chen, Z. X.; Wang, Y. K.; Han, J. Y.; Wang, T. Q.; Leng, Y. X.; Wang, Y. M.; Li, T. X.; Han, Y. Q. Preparation of polyaniline onto dl-tartaric acid assembled MXene surface as an electrode material for supercapacitors. ACS Appl. Energy Mater. 2020, 3, 9326–9336.

[38]

Nguyen, P. T.; Jang, J.; Lee, Y.; Choi, S. T.; In, J. B. Laser-assisted fabrication of flexible monofilament fiber supercapacitors. J. Mater. Chem. A 2021, 9, 4841–4850.

[39]

Liu, L. X.; Weng, Q. H.; Lu, X. Y.; Sun, X. L.; Zhang, L.; Schmidt, O. G. Advances on microsized on-chip lithium-ion batteries. Small 2017, 13, 1701847.

[40]

Chen, G. Q.; Hu, O. D.; Lu, J.; Gu, J. F.; Chen, K.; Huang, J. R.; Hou, L. X.; Jiang, X. C. Highly flexible and adhesive poly(vinyl alcohol)/poly(acrylic amide-co-2-acrylamido-2-methylpropane sulfonic acid)/glycerin hydrogel electrolyte for stretchable and resumable supercapacitor. Chem. Eng. J. 2021, 425, 131505.

[41]

Han, M. M.; Wang, X. Y.; Chen, C.; Zou, M. C.; Niu, Z. Q.; Yang, Q. H.; Cao, A. Y.; Song, L.; Chen, J.; Xie, S. S. All-solid-state supercapacitors with superior compressive strength and volumetric capacitance. Energy Stor. Mater. 2018, 13, 119–126.

[42]

Li, L.; Zhang, Y.; Lu, H. Y.; Wang, Y. F.; Xu, J. S.; Zhu, J. X.; Zhang, C.; Liu, T. X. Cryopolymerization enables anisotropic polyaniline hybrid hydrogels with superelasticity and highly deformation-tolerant electrochemical energy storage. Nat. Commun. 2020, 11, 62.

[43]

Zhang, H. X.; Niu, W. B.; Zhang, S. F. Extremely stretchable, sticky and conductive double-network ionic hydrogel for ultra-stretchable and compressible supercapacitors. Chem. Eng. J. 2020, 387, 124105.

[44]

Ren, Y. F.; Liu, Y. L.; Wang, S. Y.; Wang, Q.; Li, S. H.; Wang, W. J.; Dong, X. C. Stretchable supercapacitor based on a hierarchical PPy/CNT electrode and hybrid hydrogel electrolyte with a wide operating temperature. Carbon Energy 2022, 4, 527–538.

[45]

Liu, Q.; Zhao, A. R.; He, X. X.; Li, Q.; Sun, J.; Lei, Z. B.; Liu, Z. H. Full-temperature all-solid-state Ti3C2T x /aramid fiber supercapacitor with optimal balance of capacitive performance and flexibility. Adv. Funct. Mater. 2021, 31, 2010944.

[46]

Lv, Z. S.; Wang, C. X.; Wan, C. J.; Wang, R. H.; Dai, X. Y.; Wei, J. Q.; Xia, H. R.; Li, W. L.; Zhang, W.; Cao, S. K. et al. Strain-driven auto-detachable patterning of flexible electrodes. Adv. Mater. 2022, 34, 2202877.

[47]

Han, J. K.; Yang, J. K.; Gao, W. W.; Bai, H. Ice-templated, large-area silver nanowire pattern for flexible transparent electrode. Adv. Funct. Mater. 2021, 31, 2010155.

[48]

Zou, Y. L.; Chen, C.; Sun, Y. J.; Gan, S. C.; Dong, L. B.; Zhao, J. H.; Rong, J. H. Flexible, all-hydrogel supercapacitor with self-healing ability. Chem. Eng. J. 2021, 418, 128616.

[49]

Yang, J. Y.; Cao, Q. H.; Tang, X. W.; Du, J. J.; Yu, T.; Xu, X.; Cai, D. M.; Guan, C.; Huang, W. 3D-printed highly stretchable conducting polymer electrodes for flexible supercapacitors. J. Mater. Chem. A 2021, 9, 19649–19658.

[50]

Wang, Z. B.; Wu, Y. G.; Zhu, B.; Chen, Q. X.; Zhang, Y.; Xu, Z. J.; Sun, D. H.; Lin, L. W.; Wu, D. Z. Self-patterning of highly stretchable and electrically conductive liquid metal conductors by direct-write super-hydrophilic laser-induced graphene and electroless copper plating. ACS Appl. Mater. Interfaces 2023, 15, 4713–4723.

[51]

Mu, H. C.; Wang, W. Q.; Yang, L. F.; Chen, J.; Li, X. W.; Yuan, Y. Z.; Tian, X. H.; Wang, G. C. Fully integrated design of intrinsically stretchable electrodes for stretchable supercapacitors. Energy Stor. Mater. 2021, 39, 130–138.

Nano Research
Pages 7221-7229
Cite this article:
Lu Y, Li K, Song Y-Y, et al. Ultra-flexible all-in-one anti-freeze photothermally enhanced supercapacitors. Nano Research, 2024, 17(8): 7221-7229. https://doi.org/10.1007/s12274-024-6743-x
Topics:

234

Views

0

Crossref

0

Web of Science

0

Scopus

0

CSCD

Altmetrics

Received: 03 January 2024
Revised: 06 May 2024
Accepted: 07 May 2024
Published: 06 June 2024
© Tsinghua University Press 2024
Return