AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

A passive, reusable, and resonating wearable sensing system for on-demand, non-invasive, and wireless molecular stress biomarker detection

Shingirirai Chakoma1,2,§Xiaochang Pei1,2,§Huiting Qin3,§Anita Ghandehari1,2Sahar NajafiKhoshnoo1,2Jerome Rajendran1,2Rahim Esfandyarpour1,2,3( )
Department of Electrical Engineering and Computer Science, University of California, Irvine, CA 92697, USA
Laboratory for Integrated Nano BioElectronics Innovation, The Henry Samueli School of Engineering, University of California, Irvine, CA 92697, USA
Henry Samueli School of Engineering, University of California, Irvine, CA 92697, USA

§ Shingirirai Chakoma, Xiaochang Pei, and Huiting Qin contributed equally to this work.

Show Author Information

Graphical Abstract

This paper presents a reusable, passive, wearable molecularly imprinted polymer-radio-frequency (MIP-RF) sensor for on-demand stress assessment by the detection of sweat cortisol molecules. The battery-free resonate-sensing wireless system is integrated with near-field communication for on-demand stress monitoring during daily activities.

Abstract

The significant impact of stress on health necessitates accurate assessment methods, where traditional questionnaires lack reliability and objectivity. Current advancements like wearables with electrocardiogram (ECG) and galvanic skin response (GSR) sensors face accuracy and artifact challenges. Molecular biosensors detecting cortisol, a critical stress hormone, present a promising solution. However, existing cortisol assays, requiring saliva, urine, or blood, are complex, expensive, and unsuitable for continuous monitoring. Our study introduces a passive, molecularly imprinted polymer-radio-frequency (MIP-RF) wearable sensing system for real-time, non-invasive sweat cortisol assessment. This system is wireless, flexible, battery-free, reusable, environmentally stable, and designed for long-term monitoring, using an inductance-capacitance transducer. The transducer translates cortisol concentrations into resonant frequency shifts with high sensitivity (~ 160 kHz/(log (μM))) across a physiological range of 0.025–1 μM. Integrated with near-field communication (NFC) for wireless and battery-free operation, and three-dimensional (3D)-printed microfluidic channel for in-situ sweat collection, it enables daily activity cortisol level tracking. Validation of cortisol circadian rhythm through morning and evening measurements demonstrates its effectiveness in tracking and monitoring sweat cortisol levels. A 28-day stability test and the use of cost-effective 3D nanomaterials printing enhance its economic viability and reusability. This innovation paves the way for a new era in realistic, on-demand health monitoring outside the laboratory, leveraging wearable technology for molecular stress biomarker detection.

Electronic Supplementary Material

Video
6738_ESM2.mp4
Download File(s)
6738_ESM1.pdf (2.4 MB)

References

[1]

Singh, N. K.; Chung, S.; Sveiven, M.; Hall, D. A. Cortisol detection in undiluted human serum using a sensitive electrochemical structure-switching aptamer over an antifouling nanocomposite layer. ACS Omega 2021, 6, 27888–27897.

[2]

Wang, B.; Zhao, C. Z.; Wang, Z. Q.; Yang, K. A.; Cheng, X. B.; Liu, W. F.; Yu, W. Z.; Lin, S. Y.; Zhao, Y. C.; Cheung, K. M. et al. Wearable aptamer-field-effect transistor sensing system for noninvasive cortisol monitoring. Sci. Adv. 2022, 8, eabk0967.

[3]

Clow, A.; Hucklebridge, F.; Stalder, T.; Evans, P.; Thorn, L. The cortisol awakening response: More than a measure of HPA axis function. Neurosci. Biobehav. Rev. 2010, 35, 97–103.

[4]

Nicolaides, N. C.; Charmandari, E.; Chrousos, G. P.; Kino, T. Circadian endocrine rhythms: The hypothalamic–pituitary–adrenal axis and its actions. Ann. N. Y. Acad. Sci. 2014, 1318, 71–80.

[5]

Steckl, A. J.; Ray, P. Stress biomarkers in biological fluids and their point-of-use detection. ACS Sens. 2018, 3, 2025–2044.

[6]

Venugopal, M.; Arya, S. K.; Chornokur, G.; Bhansali, S. A realtime and continuous assessment of cortisol in ISF using electrochemical impedance spectroscopy. Sens. Actuators A Phys. 2011, 172, 154–160.

[7]

Manenschijn, L.; Koper, J. W.; Lamberts, S. W. J.; Van Rossum, E. F. C. Evaluation of a method to measure long term cortisol levels. Steroids 2011, 76, 1032–1036.

[8]

Parlak, O.; Keene, S. T.; Marais, A.; Curto, V. F.; Salleo, A. Molecularly selective nanoporous membrane-based wearable organic electrochemical device for noninvasive cortisol sensing. Sci. Adv. 2018, 4, eaar2904.

[9]

Segerstrom, S. C.; Miller, G. E. Psychological stress and the human immune system: A meta-analytic study of 30 years of inquiry. Psychol. Bull. 2004, 130, 601–630.

[10]

Goh, J.; Pfeffer, J.; Zenios, S. A. The relationship between workplace stressors and mortality and health costs in the United States. Manage. Sci. 2016, 62, 608–628.

[11]

Laochai, T.; Yukird, J.; Promphet, N.; Qin, J. Q.; Chailapakul, O.; Rodthongkum, N. Non-invasive electrochemical immunosensor for sweat cortisol based on L-cys/AuNPs/ MXene modified thread electrode. Biosens. Bioelectron. 2022, 203, 114039.

[12]

Naik, A. R.; Zhou, Y. L.; Dey, A. A.; Arellano, D. L. G.; Okoroanyanwu, U.; Secor, E. B.; Hersam, M. C.; Morse, J.; Rothstein, J. P.; Carter, K. R. et al. Printed microfluidic sweat sensing platform for cortisol and glucose detection. Lab Chip 2022, 22, 156–169.

[13]

Monk, C. S.; Hart, K. A.; Berghaus, R. D.; Norton, N. A.; Moore, P. A.; Myrna, K. E. Detection of endogenous cortisol in equine tears and blood at rest and after simulated stress. Vet. Ophthalmol. 2014, 17, 53–60.

[14]

Sekar, M.; Sriramprabha, R.; Sekhar, P. K.; Bhansali, S.; Ponpandian, N.; Pandiaraj, M.; Viswanathan, C. Review-Towards wearable sensor platforms for the electrochemical detection of cortisol. J. Electrochem. Soc. 2020, 167, 067508.

[15]

Stevens, R. C.; Soelberg, S. D.; Near, S.; Furlong, C. E. Detection of cortisol in saliva with a flow-filtered, portable surface plasmon resonance biosensor system. Anal. Chem. 2008, 80, 6747–6751.

[16]

Ghaffari, R.; Yang, D. S.; Kim, J.; Mansour, A.; Wright, J. A.; Model, J. B.; Wright, D. E.; Rogers, J. A.; Ray, T. R. State of sweat: Emerging wearable systems for real-time, noninvasive sweat sensing and analytics. ACS Sens. 2021, 6, 2787–2801.

[17]

Huang, Z. Y.; Chen, H.; Ye, H. R.; Chen, Z. X.; Jaffrezic-Renault, N.; Guo, Z. Z. An ultrasensitive aptamer-antibody sandwich cortisol sensor for the noninvasive monitoring of stress state. Biosens. Bioelectron. 2021, 190, 113451.

[18]

Kinnamon, D.; Ghanta, R.; Lin, K. C.; Muthukumar, S.; Prasad, S. Portable biosensor for monitoring cortisol in low-volume perspired human sweat. Sci. Rep. 2017, 7, 13312.

[19]

An, J. E.; Kim, K. H.; Park, S. J.; Seo, S. E.; Kim, J.; Ha, S.; Bae, J.; Kwon, O. S. Wearable cortisol aptasensor for simple and rapid real-time monitoring. ACS Sens. 2022, 7, 99–108.

[20]

Shahar, T.; Tal, N.; Mandler, D. Molecularly imprinted polymer particles: Formation, characterization and application. Colloids Surf. A Physicochem. Eng. Aspects 2016, 495, 11–19.

[21]

Yeasmin, S.; Wu, B.; Liu, Y.; Ullah, A.; Cheng, L. J. Nano gold-doped molecularly imprinted electrochemical sensor for rapid and ultrasensitive cortisol detection. Biosens. Bioelectron. 2022, 206, 114142.

[22]

Tang, W. X.; Yin, L.; Sempionatto, J. R.; Moon, J. M.; Teymourian, H.; Wang, J. Touch-based stressless cortisol sensing. Adv. Mater. 2021, 33, 2008465.

[23]

Li, Y. X.; Luo, L. X.; Kong, Y. Q.; Li, Y. J.; Wang, Q. S.; Wang, M. Q.; Li, Y.; Davenport, A.; Li, B. Recent advances in molecularly imprinted polymer-based electrochemical sensors. Biosens. Bioelectron. 2024, 249, 116018.

[24]

Betlem, K.; Down, M. P.; Foster, C. W.; Akthar, S.; Eersels, K.; Van Grinsven, B.; Cleij, T. J.; Banks, C. E.; Peeters, M. Development of a flexible MIP-based biosensor platform for the thermal detection of neurotransmitters. MRS Adv. 2018, 3, 1569–1574.

[25]

BelBruno, J. J. Molecularly imprinted polymers. Chem. Rev. 2019, 119, 94–119.

[26]

Ashley, J.; Shahbazi, M. A.; Kant, K.; Chidambara, V. A.; Wolff, A.; Bang, D. D.; Sun, Y. Molecularly imprinted polymers for sample preparation and biosensing in food analysis: Progress and perspectives. Biosens. Bioelectron. 2017, 91, 606–615.

[27]

Sheibani, S.; Capua, L.; Kamaei, S.; Akbari, S. S. A.; Zhang, J. R.; Guerin, H.; Ionescu, A. M. Extended gate field-effect-transistor for sensing cortisol stress hormone. Commun. Mater. 2021, 2, 10.

[28]

Lv, X. L.; Li, C. F.; Que, Y. H.; Li, G. F.; Hou, X. J.; Li, Y. J.; Li, L. F.; Sun, Y. B.; Guo, Y. S. Experimental demonstration of broadband impedance matching using coupled electromagnetic resonators. Sci. Rep. 2020, 10, 7437.

[29]

Piekarz, I.; Sorocki, J.; Górska, S.; Bartsch, H.; Rydosz, A.; Smolarz, R.; Wincza, K.; Gruszczynski, S. High sensitivity and selectivity microwave biosensor using biofunctionalized differential resonant array implemented in LTCC for Escherichia coli detection. Measurement 2023, 208, 112473.

[30]
Chen, R. G.; Van Wyk, J. D.; Wang, S.; Odendaal, W. G. Technologies and characteristics of integrated EMI filters for switch mode power supplies. In 2004 IEEE 35 th Annual Power Electronics Specialists Conference (IEEE Cat. No.04CH37551), Aachen, Germany, 2004, pp 4873–4880.
[31]

Khodapanahandeh, M.; Babaeihaselghobi, A.; Badri Ghavifekr, H. Design and simulation of a novel RF-MEMS tunable narrow band LC filter in the UHF band. Microsyst. Technol. 2021, 27, 325–334.

[32]

Niu, S. M.; Matsuhisa, N.; Beker, L.; Li, J. X.; Wang, S. H.; Wang, J. C.; Jiang, Y. W.; Yan, X. Z.; Yun, Y.; Burnett, W. et al. A wireless body area sensor network based on stretchable passive tags. Nat. Electron. 2019, 2, 361–368.

[33]

Takamatsu, T.; Sijie, Y.; Miyake, T. Wearable, implantable, parity-time symmetric bioresonators for extremely small biological signal monitoring. Adv. Mater. Technol. 2023, 8, 2201704.

[34]

Huang, Q. A.; Dong, L.; Wang, L. F. LC passive wireless sensors toward a wireless sensing platform: Status, prospects, and challenges. J. Microelectromech. Syst. 2016, 25, 822–841.

[35]

Nabavi, S.; Anabestani, H.; Bhadra, S. A printed paper-based RFID tag for wireless humidity sensing. In 2022 IEEE Sensors, Dallas, USA, 2022, pp, 1–4

[36]

Mazrouei, R.; Velasco, V.; Esfandyarpour, R. 3D-bioprinted all-inclusive bioanalytical platforms for cell studies. Sci. Rep. 2020, 10, 14669

[37]

Tavares-Negrete, J. A.; Babayigit, C.; Najafikoshnoo, S.; Lee, S. W.; Boyraz, O.; Esfandyarpour, R. A novel 3D-bioprinting technology of orderly extruded multi-materials via photopolymerization. Adv. Mater. Technol. 2023, 8, 2201926.

[38]

Velasco, V.; Joshi, K.; Chen, J. M.; Esfandyarpour, R. Personalized drug efficacy monitoring chip. Anal. Chem. 2019, 91, 14927–14935.

[39]

Esfandyarpour, R.; Esfandyarpour, H.; Javanmard, M.; Harris, J. S.; Davis, R. W. Electrical detection of protein biomarkers using nanoneedle biosensors. MRS OPL 2012, 1414, mrsf11-1414.

[40]

Esfandyarpour, R.; Javanmard, M.; Koochak, Z.; Esfandyarpour, H.; Harris, J. S.; Davis, R. W. Thin film nanoelectronic probe for protein detection. MRS OPL 2013, 1572, 1–6.

[41]

Yi, Q.; Najafikhoshnoo, S.; Das, P.; Noh, S.; Hoang, E.; Kim, T.; Esfandyarpour, R. All-3D-printed, flexible, and hybrid wearable bioelectronic tactile sensors using biocompatible nanocomposites for health monitoring. Adv. Mater. Technol. 2022, 7, 2101034.

[42]

Yi, Q.; Pei, X. C.; Das, P.; Qin, H. T.; Lee, S. W.; Esfandyarpour, R. A self-powered triboelectric MXene-based 3D-printed wearable physiological biosignal sensing system for on-demand, wireless, and real-time health monitoring. Nano Energy 2022, 101, 107511.

[43]

Nikbakhtnasrabadi, F.; Hosseini, E. S.; Dervin, S.; Shakthivel, D.; Dahiya, R. Smart bandage with inductor-capacitor resonant tank based printed wireless pressure sensor on electrospun poly- L-lactide nanofibers. Adv. Electron. Mater. 2022, 8, 2101348.

[44]

Ali, L.; Wang, C.; Meng, F. Y.; Adhikari, K. K.; Wei, Y. C.; Zhao, M. High-sensitivity accurate characterization of complex permittivity using inter-digital capacitor-based planar microwave sensor. In 2021 4th International Conference on Information Communication and Signal Processing (ICICSP), Shanghai, China, 2021, pp, 295–298

[45]

Sontimuang, C.; Suedee, R.; Dickert, F. Interdigitated capacitive biosensor based on molecularly imprinted polymer for rapid detection of Hev b1 latex allergen. Anal. Biochem. 2011, 410, 224–233.

[46]

Das, P.; Najafikhoshnoo, S.; Tavares-Negrete, J. A.; Yi, Q.; Esfandyarpour, R. An in-vivo-mimicking 3D lung cancer-on-a-chip model to study the effect of external stimulus on the progress and inhibition of cancer metastasis. Bioprinting 2022, 28, e00243.

[47]

Kim, H.; Kim, Y. S.; Mahmood, M.; Kwon, S.; Zavanelli, N.; Kim, H. S.; Rim, Y. S.; Epps, F.; Yeo, W. H. Fully integrated, stretchable, wireless skin-conformal bioelectronics for continuous stress monitoring in daily life. Adv. Sci. 2020, 7, 2000810.

[48]

Kalra, A.; Lowe, A.; Al-Jumaily, A. Mechanical behaviour of skin: A review. J. Mater. Sci. Eng. 2016, 5, 1000254.

[49]

Wang, B. H.; Huang, W.; Chi, L. F.; Al-Hashimi, M.; Marks, T. J.; Facchetti, A. High- k gate dielectrics for emerging flexible and stretchable electronics. Chem. Rev. 2018, 118, 5690–5754.

[50]

Xu, Y. D.; Sun, B. H.; Ling, Y.; Fei, Q. H.; Chen, Z. Y.; Li, X. P.; Guo, P. J.; Jeon, N.; Goswami, S.; Liao, Y. X. et al. Multiscale porous elastomer substrates for multifunctional on-skin electronics with passive-cooling capabilities. Proc. Natl. Acad. Sci. USA 2020, 117, 205–213.

[51]

Sun, D.; Zhang, Y.; Liu, Y. F.; Wang, Z. G.; Chen, X. C.; Meng, Z. Y.; Kang, S. F.; Zheng, Y. Y.; Cui, L. F.; Chen, M. L. et al. In-situ homodispersely immobilization of Ag@AgCl on chloridized g-C3N4 nanosheets as an ultrastable plasmonic photocatalyst. Chem. Eng. J. 2020, 384, 123259.

[52]

NajafiKhoshnoo, S.; Kim, T.; Tavares-Negrete, J. A.; Pei, X. C.; Das, P.; Lee, S. W.; Rajendran, J.; Esfandyarpour, R. A 3D nanomaterials-printed wearable, battery-free, biocompatible, flexible, and wireless pH sensor system for real-time health monitoring. Adv. Mater. Technol. 2023, 8, 2201655.

[53]

Lee, S. W.; Pei, X. C.; Rajendran, J.; Esfandyarpour, R. A wireless and battery-free wearable pressure sensing system for human–machine interaction and health monitoring. IEEE J. Flexible Electron. 2023, 2, 439–447.

[54]

Mei, H.; Zhao, X.; Gui, X. C.; Lu, D. W.; Han, D. Y.; Xiao, S. S.; Cheng, L. F. SiC encapsulated Fe@CNT ultra-high absorptive shielding material for high temperature resistant EMI shielding. Ceram. Int. 2019, 45, 17144–17151.

[55]

Zhu, X. H.; Liu, K.; Lu, Z. B.; Xu, Y. P.; Qi, S. S.; Zhang, G. G. Effect of oxygen atoms on graphene: Adsorption and doping. Phys. E Low Dimens. Syst. Nanostruct. 2020, 117, 113827.

[56]

Rajendran, J. Amperometric determination of salivary thiocyanate using electrochemically fabricated poly (3, 4-ethylenedioxythiophene)/MXene hybrid film. J. Hazard. Mater. 2023, 449, 130979.

[57]

Al-Hetlani, E.; D’Cruz, B.; Amin, M. O. A 3D miniaturized solid-state chemiluminescence sensor based on ruthenium functionalized polymeric monolith for the detection of pharmaceutical drugs. J. Mater. Sci. 2020, 55, 13232–13243.

[58]

Gillan, L.; Jansson, E. Molecularly imprinted polymer on roll-to-roll printed electrodes as a single use sensor for monitoring of cortisol in sweat. Flex. Print. Electron. 2022, 7, 025014.

[59]

Yulianti, E. S.; Rahman, S. F.; Whulanza, Y. Molecularly imprinted polymer-based sensor for electrochemical detection of cortisol. Biosensors 2022, 12, 1090.

[60]

Semitekolos, D.; Kainourgios, P.; Jones, C.; Rana, A.; Koumoulos, E. P.; Charitidis, C. A. Advanced carbon fibre composites via poly methacrylic acid surface treatment; surface analysis and mechanical properties investigation. Compos. Part B Eng. 2018, 155, 237–243.

[61]

Xing, Y.; Sun, X. M.; Li, B. H. Poly(methacrylic acid)-modified chitosan for enhancement adsorption of water-soluble cationic dyes. Polym. Eng. Sci. 2009, 49, 272–280.

[62]

Liu, D.; Pan, J. L.; Tang, J. H.; Lian, N. Preparation of polymethacrylate monolith modified with cysteine for the determination of Cr(III) ions. RSC Adv. 2018, 8, 24906–24912.

[63]

Chawla, V.; Ha, D. S. An overview of passive RFID. IEEE Commun. Mag. 2007, 45, 11–17.

[64]

Elbasheir, M. S.; Saeed, R. A.; Edam, S. Measurement and simulation-based exposure assessment at a far-field for a multitechnology cellular site up to 5G NR. IEEE Access 2022, 10, 56888–56900.

[65]

Fernández, M.; Guerra, D.; Gil, U.; Trigo, I.; Peña, I.; Arrinda, A. Measurements and analysis of temporal and spatial variability of WiFi exposure levels in the 2.4 GHz frequency band. Measurement 2020, 149, 106970.

[66]

Wagih, M.; Komolafe, A.; Weddell, A. S.; Beeby, S. Broadband compact substrate-independent textile wearable antenna for simultaneous near- and far-field wireless power transmission. IEEE Open J. Antennas Propag. 2022, 3, 398–411.

[67]

Yang, C. P.; Su, Q. P.; Zheng, S. B.; Nori, F. Crosstalk-insensitive method for simultaneously coupling multiple pairs of resonators. Phys. Rev. A 2016, 93, 042307.

[68]

Lathiya, P.; Wang, J. Near-field communications (NFC) for wireless power transfer (WPT): An overview. In Wireless Power Transfer-Recent Development, Applications and New Perspectives. Zellagui, M., Ed.; IntechOpen: London, 2021, pp, 95–122.

[69]

Ofosu Addo, E.; Kommey, B.; Selasi Agbemenu, A.; Kumbong, H. On the design and implementation of efficient antennas for high frequency-radio frequency identification read/write devices. Eng. Rep. 2021, 3, e12407.

[70]

Unger, C.; Lieberzeit, P. A. Molecularly imprinted thin film surfaces in sensing: Chances and challenges. React. Funct. Polym. 2021, 161, 104855.

[71]

Ansell, R. J. Characterization of the binding properties of molecularly imprinted polymers. In Molecularly Imprinted Polymers in Biotechnology. Mattiasson, B.; Ye, L., Eds.; Springer: Cham, 2015, pp 51–93

[72]

Hourlier-Fargette, A.; Schon, S.; Xue, Y. G.; Avila, R.; Li, W. H.; Gao, Y. W.; Liu, C.; Kim, S. B.; Raj, M. S.; Fields, K. B. et al. Skin-interfaced soft microfluidic systems with modular and reusable electronics for in situ capacitive sensing of sweat loss, rate and conductivity. Lab Chip 2020, 20, 4391–4403.

[73]

Mustafa, M.; Rizwan, M.; Kashif, M.; Khan, T.; Waseem, M.; Annuk, A. LC passive wireless sensor system based on two switches for detection of triple parameters. Sensors 2022, 22, 3024.

[74]

Raul, J. S.; Cirimele, V.; Ludes, B.; Kintz, P. Detection of physiological concentrations of cortisol and cortisone in human hair. Clin. Biochem. 2004, 37, 1105–1111.

[75]

Russell, E.; Koren, G.; Rieder, M.; Van Uum, S. H. M. The detection of cortisol in human sweat: Implications for measurement of cortisol in hair. Ther. Drug Monit. 2014, 36, 30–34.

[76]

Lu, N. S.; Lu, C.; Yang, S. X.; Rogers, J. Highly sensitive skin-mountable strain gauges based entirely on elastomers. Adv. Funct. Mater. 2012, 22, 4044–4050.

[77]

Hübert, T.; Boon-Brett, L.; Black, G.; Banach, U. Hydrogen sensors—A review. Sens. Actuators B: Chem. 2011, 157, 329–352.

[78]

Kim, T.; Yi, Q.; Hoang, E.; Esfandyarpour, R. A 3D printed wearable bioelectronic patch for multi-sensing and in situ sweat electrolyte monitoring. Adv. Mater. Technol. 2021, 6, 2001021.

[79]

Joshi, K.; Javani, A.; Park, J.; Velasco, V.; Xu, B. Z.; Razorenova, O.; Esfandyarpour, R. A machine learning-assisted nanoparticle-printed biochip for real-time single cancer cell analysis. Adv. Biosyst. 2020, 4, 2000160.

Nano Research
Pages 7542-7556
Cite this article:
Chakoma S, Pei X, Qin H, et al. A passive, reusable, and resonating wearable sensing system for on-demand, non-invasive, and wireless molecular stress biomarker detection. Nano Research, 2024, 17(8): 7542-7556. https://doi.org/10.1007/s12274-024-6738-7
Topics:

466

Views

6

Crossref

6

Web of Science

6

Scopus

0

CSCD

Altmetrics

Received: 01 March 2024
Revised: 21 April 2024
Accepted: 06 May 2024
Published: 20 June 2024
© Tsinghua University Press 2024
Return