AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

CNT array-induced nanobubble assembly, nanodisk fabrication and enhanced spectral detection of CNT bundle density

Zhiyuan Xia1Ziming Ye1Bo Zhao1Tingsong Zhang2Qi Wang1Kun Chen1Meng Li3Xiaobing Kong1Yu-Qing Zheng2Enzheng Shi4Yuanyuan Shang3( )Anyuan Cao1( )
School of Materials Science and Engineering, Peking University, Beijing 100871, China
School of Integrated Circuits, Peking University, Beijing 100871, China
School of Physics and Microelectronics, Zhengzhou University, Zhengzhou 450001, China
School of Engineering, Westlake University, Hangzhou 310024, China
Show Author Information

Graphical Abstract

Realized by nanobubble self-assembly, precise, selective decoration of periodic, even-sized Ag nanodisks along horizontally aligned carbon nanotube arrays enables the surface enhanced Raman scattering of dye molecules and an accurate spectral detection of carbon nanotube bundles in quantities.

Abstract

Alignment, functionalization and detection of carbon nanotube (CNT) bundles are vital processes for utilizing this one-dimensional nanomaterial in electronics. Here, we report a polymer-assisted wet shearing method to acquire super-aligned crater-patterned CNT arrays by nanobubble (NB) self-assembly with a "migrate and aggregation" mechanism and use craters to controllably mold even-sized nanodisks periodically along CNT bundles with tunable densities. This green, low-cost method can be extended to diverse substrates and fabricate different nanodisks. As an example, the Ag-nanodisk-patterned CNT arrays are utilized as substrates of surface-enhanced Raman scattering (SERS) for rhodamine 6G (R6G) and methylene blue (MB) in which a linear correlation is found between the SERS intensity and the CNT bundle density due to the periodic distribution of hot spots, enabling a spectral detection of CNT bundles and their densities by conventional dye molecules. Distinguishing from routine morphological characterization, this spectral method possesses an enhanced accuracy and a detection range of 0.1–2 μm–1, showing its uniqueness in the detection of CNT bundle density since the intensity of traditional spectral merely relates to the quantity of CNTs, exhibiting its potential in future CNT-bundle-based electronics.

Electronic Supplementary Material

Download File(s)
6734_ESM.pdf (1.9 MB)

References

[1]

Cao, Q.; Tersoff, J.; Farmer, D. B.; Zhu, Y.; Han, S. J. Carbon nanotube transistors scaled to a 40-nanometer footprint. Science 2017, 356, 1369–1372.

[2]

Qiu, C. G.; Zhang, Z. Y.; Xiao, M. M.; Yang, Y. J.; Zhong, D. L.; Peng, L. M. Scaling carbon nanotube complementary transistors to 5-nm gate lengths. Science 2017, 355, 271–276.

[3]

Shulaker, M. M.; Hills, G.; Patil, N.; Wei, H.; Chen, H. Y.; Wong, H. S. P.; Mitra, S. Carbon nanotube computer. Nature 2013, 501, 526–530.

[4]

Chen, K.; Gao, W.; Emaminejad, S.; Kiriya, D.; Ota, H.; Nyein, H. Y. Y.; Takei, K.; Javey, A. Printed carbon nanotube electronics and sensor systems. Adv. Mater. 2016, 28, 4397–4414.

[5]

Zhang, R. F.; Zhang, Y. Y.; Wei, F. Horizontally aligned carbon nanotube arrays: Growth mechanism, controlled synthesis, characterization, properties and applications. Chem. Soc. Rev. 2017, 46, 3661–3715.

[6]

Cao, Q.; Han, S. J.; Tulevski, G. S.; Zhu, Y.; Lu, D. D.; Haensch, W. Arrays of single-walled carbon nanotubes with full surface coverage for high-performance electronics. Nat. Nanotechnol. 2013, 8, 180–186.

[7]

Jiang, K. L.; Li, Q. Q.; Fan, S. S. Spinning continuous carbon nanotube yarns. Nature 2002, 419, 801.

[8]

He, X. W.; Gao, W. L.; Xie, L. J.; Li, B.; Zhang, Q.; Lei, S. D.; Robinson, J. M.; Hároz, E. H.; Doorn, S. K.; Wang, W. P. et al. Wafer-scale monodomain films of spontaneously aligned single-walled carbon nanotubes. Nat. Nanotechnol. 2016, 11, 633–638.

[9]

McLean, R. S.; Huang, X. Y.; Khripin, C.; Jagota, A.; Zheng, M. Controlled two-dimensional pattern of spontaneously aligned carbon nanotubes. Nano Lett. 2006, 6, 55–60.

[10]

Zhang, M.; Fang, S. L.; Zakhidov, A. A.; Lee, S. B.; Aliev, A. E.; Williams, C. D.; Atkinson, K. R.; Baughman, R. H. Strong, transparent, multifunctional, carbon nanotube sheets. Science 2005, 309, 1215–1219.

[11]

Jinkins, K. R.; Chan, J.; Brady, G. J.; Gronski, K. K.; Gopalan, P.; Evensen, H. T.; Berson, A.; Arnold, M. S. Nanotube alignment mechanism in floating evaporative self-assembly. Langmuir 2017, 33, 13407–13414.

[12]

Li, X. L.; Zhang, L.; Wang, X. R.; Shimoyama, I.; Sun, X. M.; Seo, W. S.; Dai, H. J. Langmuir-Blodgett assembly of densely aligned single-walled carbon nanotubes from bulk materials. J. Am. Chem. Soc. 2007, 129, 4890–4891.

[13]

Yu, G. H.; Cao, A. Y.; Lieber, C. M. Large-area blown bubble films of aligned nanowires and carbon nanotubes. Nat. Nanotechnol. 2007, 2, 372–377.

[14]

Wang, D.; Song, P. C.; Liu, C. H.; Wu, W.; Fan, S. S. Highly oriented carbon nanotube papers made of aligned carbon nanotubes. Nanotechnology 2008, 19, 075609.

[15]

Sun, W.; Shen, J.; Zhao, Z.; Arellano, N.; Rettner, C.; Tang, J. S.; Cao, T. Y.; Zhou, Z. Y.; Ta, T.; Streit, J. K. et al. Precise pitch-scaling of carbon nanotube arrays within three-dimensional DNA nanotrenches. Science 2020, 368, 874–877.

[16]

Zhao, M. Y.; Chen, Y. H.; Wang, K. X.; Zhang, Z. X.; Streit, J. K.; Fagan, J. A.; Tang, J. S.; Zheng, M.; Yang, C. Y.; Zhu, Z. et al. DNA-directed nanofabrication of high-performance carbon nanotube field-effect transistors. Science 2020, 368, 878–881.

[17]

Liu, L. J.; Han, J.; Xu, L.; Zhou, J. S.; Zhao, C. Y.; Ding, S. J.; Shi, H. W.; Xiao, M. M.; Ding, L.; Ma, Z. et al. Aligned, high-density semiconducting carbon nanotube arrays for high-performance electronics. Science 2020, 368, 850–856.

[18]

Zhao, J. J.; Park, H.; Han, J.; Lu, J. P. Electronic properties of carbon nanotubes with covalent sidewall functionalization. J. Phys. Chem. B 2004, 108, 4227–4230.

[19]

Bai, Y. X.; Zhang, R. F.; Ye, X.; Zhu, Z. X.; Xie, H. H.; Shen, B. Y.; Cai, D. L.; Liu, B. F.; Zhang, C. X.; Jia, Z. et al. Carbon nanotube bundles with tensile strength over 80 GPa. Nat. Nanotechnol. 2018, 13, 589–595.

[20]

He, X. N.; Gao, Y.; Mahjouri-Samani, M.; Black, P. N.; Allen, J.; Mitchell, M.; Xiong, W.; Zhou, Y. S.; Jiang, L.; Lu, Y. F. Surface-enhanced Raman spectroscopy using gold-coated horizontally aligned carbon nanotubes. Nanotechnology 2012, 23, 205702.

[21]

Ji, C. Y.; Li, H. B.; Zhang, L. H.; Liu, Y.; Li, Y.; Jia, Y.; Li, Z.; Li, P. X.; Shi, E. Z.; Wei, J. Q. et al. Suspended, straightened carbon nanotube arrays by gel chapping. ACS Nano 2011, 5, 5656–5661.

[22]

Shi, H. W.; Ding, L.; Zhong, D. L.; Han, J.; Liu, L. J.; Xu, L.; Sun, P. K.; Wang, H.; Zhou, J. S.; Fang, L. et al. Radiofrequency transistors based on aligned carbon nanotube arrays. Nat. Electron. 2021, 4, 405–415.

[23]

Kim, S. H.; Haines, C. S.; Li, N.; Kim, K. J.; Mun, T. J.; Choi, C.; Di, J. T.; Oh, Y. J.; Oviedo, J. P.; Bykova, J. et al. Harvesting electrical energy from carbon nanotube yarn twist. Science 2017, 357, 773–778.

[24]

Hill, F. A.; Havel, T. F.; Livermore, C. Modeling mechanical energy storage in springs based on carbon nanotubes. Nanotechnology 2009, 20, 255704.

[25]

Di, J. T.; Zhang, X. H.; Yong, Z. Z.; Zhang, Y. Y.; Li, D.; Li, R.; Li, Q. W. Carbon-nanotube fibers for wearable devices and smart textiles. Adv. Mater. 2016, 28, 10529–10538.

[26]

Zhou, J.; Xu, X. Z.; Xin, Y. Y.; Lubineau, G. Coaxial thermoplastic elastomer-wrapped carbon nanotube fibers for deformable and wearable strain sensors. Adv. Funct. Mater. 2018, 28, 1705591.

[27]

Lima, M. D.; Li, N.; De Andrade, M. J.; Fang, S. L.; Oh, J.; Spinks, G. M.; Kozlov, M. E.; Haines, C. S.; Suh, D.; Foroughi, J. et al. Electrically, chemically, and photonically powered torsional and tensile actuation of hybrid carbon nanotube yarn muscles. Science 2012, 338, 928–932.

[28]

Guo, Y. F.; Shi, E. Z.; Zhu, J. D.; Shen, P. C.; Wang, J. T.; Lin, Y. X.; Mao, Y. W.; Deng, S. B.; Li, B. N.; Park, J. H. et al. Soft-lock drawing of super-aligned carbon nanotube bundles for nanometre electrical contacts. Nat. Nanotechnol. 2022, 17, 278–284.

[29]

Li, Z.; Jia, Y.; Wei, J. Q.; Wang, K. L.; Shu, Q. K.; Gui, X. C.; Zhu, H. W.; Cao, A. Y.; Wu, D. H. Large area, highly transparent carbon nanotube spiderwebs for energy harvesting. J. Mater. Chem. 2010, 20, 7236–7240.

[30]

Qin, L. C.; Zhao, X. L.; Hirahara, K.; Miyamoto, Y.; Ando, Y.; Iijima, S. The smallest carbon nanotube. Nature 2000, 408, 50–50.

[31]

Weijs, J. H.; Lohse, D. Why surface nanobubbles live for hours. Phys. Rev. Lett. 2013, 110, 054501.

[32]

Jadhav, A. J.; Barigou, M. Bulk nanobubbles or not nanobubbles: That is the question. Langmuir 2020, 36, 1699–1708.

[33]

Temesgen, T.; Bui, T. T.; Han, M.; Kim, T. I.; Park, H. Micro and nanobubble technologies as a new horizon for water-treatment techniques: A review. Adv. Colloid Interface Sci. 2017, 246, 40–51.

[34]

Tronson, R.; Tchea, M. F.; Ashokkumar, M.; Grieser, F. The behavior of acoustic bubbles in aqueous solutions containing soluble polymers. J. Phys. Chem. B 2012, 116, 13806–13811.

[35]

Foudas, A. W.; Kosheleva, R. I.; Favvas, E. P.; Kostoglou, M.; Mitropoulos, A. C.; Kyzas, G. Z. Fundamentals and applications of nanobubbles: A review. Chem. Eng. Res. Des. 2023, 189, 64–86.

[36]

Langer, J.; De Aberasturi, D. J.; Aizpurua, J.; Alvarez-Puebla, R. A.; Auguié, B.; Baumberg, J. J.; Bazan, G. C.; Bell, S. E. J.; Boisen, A.; Brolo, A. G. et al. Present and future of surface-enhanced Raman scattering. ACS Nano 2020, 14, 28–117.

[37]

Zrimsek, A. B.; Chiang, N.; Mattei, M.; Zaleski, S.; McAnally, M. O.; Chapman, C. T.; Henry, A. I.; Schatz, G. C.; Van Duyne, R. P. Single-molecule chemistry with surface- and tip-enhanced Raman spectroscopy. Chem. Rev. 2017, 117, 7583–7613.

[38]

Xu, L. J.; Lei, Z. C.; Li, J. X.; Zong, C.; Yang, C. J.; Ren, B. Label-free surface-enhanced Raman spectroscopy detection of DNA with single-base sensitivity. J. Am. Chem. Soc. 2015, 137, 5149–5154.

[39]

Chen, H. Y.; Lin, M. H.; Wang, C. Y.; Chang, Y. M.; Gwo, S. Large-scale hot spot engineering for quantitative SERS at the single-molecule scale. J. Am. Chem. Soc. 2015, 137, 13698–13705.

[40]

Gole, M. T.; Yin, Z. W.; Wang, M. C.; Lin, W.; Zhou, Z.; Leem, J.; Takekuma, S.; Murphy, C. J.; Nam, S. Large scale self-assembly of plasmonic nanoparticles on deformed graphene templates. Sci. Rep. 2021, 11, 12232.

Nano Research
Pages 7737-7745
Cite this article:
Xia Z, Ye Z, Zhao B, et al. CNT array-induced nanobubble assembly, nanodisk fabrication and enhanced spectral detection of CNT bundle density. Nano Research, 2024, 17(8): 7737-7745. https://doi.org/10.1007/s12274-024-6734-y
Topics:

169

Views

0

Crossref

0

Web of Science

0

Scopus

0

CSCD

Altmetrics

Received: 29 January 2024
Revised: 30 April 2024
Accepted: 02 May 2024
Published: 08 June 2024
© Tsinghua University Press 2024
Return