Journal Home > Online First

Atomic clusters typically exhibit distinctive electronic structures and physicochemical properties. However, as the size decreases, their ability to adsorb and dissociate water also diminishes, thereby affecting chemical reactions involving water molecules. Enhancing the adsorption and dissociation capabilities of atomic clusters towards water molecules and elucidating the mechanisms underlying their performance enhancement have become important research directions. Herein, employing the carrier-anchored strategy, Ru-O-Ru atomic clusters were prepared and displayed excellent activity and durability in the hydrogen evolution reaction. Specifically, the Ru-O-Ru atomic clusters exhibited only 86 mV overpotential at 100 mA·cm−2 and superior membrane-electrode-assembly activity than commercial Ru/C catalyst. Synchrotron radiation-based Fourier transform infrared spectroscopic measurements revealed that the modification of oxygen in Ru-O-Ru units promoted the reorientation of water molecules from a H-up orientation to H-down, therefore, enhanced the formation of strong hydrogen-bond network of interfacial water on the surface of Ru-O-Ru clusters, leading to enhanced adsorption and dissociation of water and accelerated Volmer step. Those findings provide a potential strategy and deep insights for the development of atomic clusters in electrocatalysts.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Atomically precise Ru-O-Ru clusters for enhanced water dissociation in alkaline hydrogen evolution

Show Author's information Dong Liu1,§Li Xu1,§Sicheng Li1Airong Xu1Yuanhua Sun1Tong Liu1Mengyuan Liu1Huijuan Wang2Xiaokang Liu1Tao Yao1Tao Ding1( )
Hefei National Research Center for Physical Sciences at the Microscale, School of Nuclear Science and Technology, Key Laboratory of Precision and Intelligent Chemistry, National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei 230029, China
Experimental Center of Engineering and Materials Science, University of Science and Technology of China, Hefei 230026, China

§ Dong Liu and Li Xu contributed equally to this work.

Abstract

Atomic clusters typically exhibit distinctive electronic structures and physicochemical properties. However, as the size decreases, their ability to adsorb and dissociate water also diminishes, thereby affecting chemical reactions involving water molecules. Enhancing the adsorption and dissociation capabilities of atomic clusters towards water molecules and elucidating the mechanisms underlying their performance enhancement have become important research directions. Herein, employing the carrier-anchored strategy, Ru-O-Ru atomic clusters were prepared and displayed excellent activity and durability in the hydrogen evolution reaction. Specifically, the Ru-O-Ru atomic clusters exhibited only 86 mV overpotential at 100 mA·cm−2 and superior membrane-electrode-assembly activity than commercial Ru/C catalyst. Synchrotron radiation-based Fourier transform infrared spectroscopic measurements revealed that the modification of oxygen in Ru-O-Ru units promoted the reorientation of water molecules from a H-up orientation to H-down, therefore, enhanced the formation of strong hydrogen-bond network of interfacial water on the surface of Ru-O-Ru clusters, leading to enhanced adsorption and dissociation of water and accelerated Volmer step. Those findings provide a potential strategy and deep insights for the development of atomic clusters in electrocatalysts.

Keywords: electrocatalysis, hydrogen evolution, Ru catalysts, atomic clusters, in-situ Fourier transform infrared (FTIR)

References(48)

[1]

Li, L. G.; Wang, P. T.; Shao, Q.; Huang, X. Q. Metallic nanostructures with low dimensionality for electrochemical water splitting. Chem. Soc. Rev. 2020, 49, 3072–3106.

[2]

Chatenet, M.; Pollet, B. G.; Dekel, D. R.; Dionigi, F.; Deseure, J.; Millet, P.; Braatz, R. D.; Bazant, M. Z.; Eikerling, M.; Staffell, I. et al. Water electrolysis: From textbook knowledge to the latest scientific strategies and industrial developments. Chem. Soc. Rev. 2022, 51, 4583–4762.

[3]

Xie, H. P.; Zhao, Z. Y.; Liu, T.; Wu, Y. F.; Lan, C.; Jiang, W. C.; Zhu, L. Y.; Wang, Y. P.; Yang, D. S.; Shao, Z. P. A membrane-based seawater electrolyser for hydrogen generation. Nature 2022, 612, 673–678.

[4]

Qin, C. L.; Chen, S.; Gomaa, H.; A. Shenashen, M.; A. El-Safty, S.; Liu, Q.; An, C. H.; Liu, X. J.; Deng, Q. B.; Hu, N. Regulating HER and OER performances of 2D materials by the external physical fields. Acta Phys.-Chim. Sin. 2024, 40, 2307059.

[5]

Ding, J. Y.; Yang, H.; Zhang, H.; Wang, Z. F.; Liu, Q.; Feng, L. G.; Hu, G. Z.; Luo, J.; Liu, X. J. Dealloyed NiTiZrAg as an efficient electrocatalyst for hydrogen evolution in alkaline seawater. Int. J. Hydrogen Energy 2024, 53, 318–324.

[6]

Mahmood, J.; Li, F.; Jung, S. M.; Okyay, M. S.; Ahmad, I.; Kim, S. J.; Park, N.; Jeong, H. Y.; Baek, J. B. An efficient and pH-universal ruthenium-based catalyst for the hydrogen evolution reaction. Nat. Nanotechnol. 2017, 12, 441–446.

[7]

Jiang, Z. L.; Song, S. J.; Zheng, X. B.; Liang, X.; Li, Z. X.; Gu, H. F.; Li, Z.; Wang, Y.; Liu, S. H.; Chen, W. X. et al. Lattice strain and schottky junction dual regulation boosts ultrafine ruthenium nanoparticles anchored on a N-modified carbon catalyst for H2 production. J. Am. Chem. Soc. 2022, 144, 19619–19626.

[8]

Shi, Y.; Ma, Z. R.; Xiao, Y. Y.; Yin, Y. C.; Huang, W. M.; Huang, Z. C.; Zheng, Y. Z.; Mu, F. Y.; Huang, R.; Shi, G. Y. et al. Electronic metal-support interaction modulates single-atom platinum catalysis for hydrogen evolution reaction. Nat. Commun. 2021, 12, 3021.

[9]

Sun, Q.; Oliveira, N. J.; Kwon, S.; Tyukhtenko, S.; Guo, J. J.; Myrthil, N.; Lopez, S. A.; Kendrick, I.; Mukerjee, S.; Ma, L. et al. Understanding hydrogen electrocatalysis by probing the hydrogen-bond network of water at the electrified Pt–solution interface. Nat. Energy 2023, 8, 859–869.

[10]

Tang, R. R.; Yang, Y.; Zhou, Y. T.; Yu, X. Y. Rational design of heterostructured Ru cluster‐based catalyst for pH universal hydrogen evolution reaction and high‐performance Zn‐H2O battery. Adv. Funct. Mater. 2024, 34, 2301925.

[11]

Pang, B. B.; Liu, X. K.; Liu, T. Y.; Chen, T.; Shen, X. Y.; Zhang, W.; Wang, S. C.; Liu, T.; Liu, D.; Ding, T. et al. Laser-assisted high-performance PtRu alloy for pH-universal hydrogen evolution. Energy Environ. Sci. 2022, 15, 102–108.

[12]

Yang, Y. J.; Yu, Y. H.; Li, J.; Chen, Q. R.; Du, Y. L.; Rao, P.; Li, R. S.; Jia, C. M.; Kang, Z. Y.; Deng, P. L. et al. Engineering ruthenium-based electrocatalysts for effective hydrogen evolution reaction. Nano-Micro Lett. 2021, 13, 160.

[13]

Wu, J. D.; Fan, J. C.; Zhao, X.; Wang, Y.; Wang, D. W.; Liu, H. T.; Gu, L.; Zhang, Q. H.; Zheng, L. R.; Singh, D. J. et al. Atomically dispersed MoO x on rhodium metallene boosts electrocatalyzed alkaline hydrogen evolution. Angew. Chem., Int. Ed. 2022, 61, e202207512.

[14]

Ding, J. Y.; Yang, H.; Zhang, S. S.; Liu, Q.; Cao, H. Q.; Luo, J.; Liu, X. J. Advances in the electrocatalytic hydrogen evolution reaction by metal nanoclusters‐based materials. Small 2022, 18, 2204524.

[15]

He, Q.; Zhou, Y. Z.; Shou, H. W.; Wang, X. Y.; Zhang, P. J.; Xu, W. J.; Qiao, S. C.; Wu, C. Q.; Liu, H. J.; Liu, D. B. et al. Synergic reaction kinetics over adjacent ruthenium sites for superb hydrogen generation in alkaline media. Adv. Mater. 2022, 34, 2110604.

[16]

Zhang, J. C.; Chen, G. B.; Liu, Q. C.; Fan, C.; Sun, D. M.; Tang, Y. W.; Sun, H. J.; Feng, X. L. Competitive adsorption: Reducing the poisoning effect of adsorbed hydroxyl on Ru single‐atom site with SnO2 for efficient hydrogen evolution. Angew. Chem., Int. Ed. 2022, 61, e202209486.

[17]

Sun, Y. M.; Xue, Z. Q.; Liu, Q. L.; Jia, Y. L.; Li, Y. L.; Liu, K.; Lin, Y. Y.; Liu, M.; Li, G. Q.; Su, C. Y. Modulating electronic structure of metal-organic frameworks by introducing atomically dispersed Ru for efficient hydrogen evolution. Nat. Commun. 2021, 12, 1369.

[18]
Liu, W. J.; Liu, W. X.; Hou, T.; Ding, J. Y.; Wang, Z. G.; Yin, R. L.; San, X.; Feng, L. G.; Luo, J.; Liu, X. J. Coupling Co-Ni phosphides for energy-saving alkaline seawater splitting. Nano Res., in press, DOI: 10.1007/s12274-024-6433-8.
DOI
[19]

Fang, S.; Zhu, X. R.; Liu, X. K.; Gu, J.; Liu, W.; Wang, D. H.; Zhang, W.; Lin, Y.; Lu, J. L.; Wei, S. Q. et al. Uncovering near-free platinum single-atom dynamics during electrochemical hydrogen evolution reaction. Nat. Commun. 2020, 11, 1029.

[20]

Pi, Y.C.; Qiu, Z. M.; Sun, Y.; Ishii, H.; Liao, Y. F.; Zhang, X. Y.; Chen, H. Y.; Pang, H. Synergistic mechanism of Sub‐nanometric Ru clusters anchored on tungsten oxide nanowires for high‐efficient bifunctional hydrogen electrocatalysis. Adv. Sci. 2023, 10, 2206096.

[21]

Li, J.; Zhan, G. M.; Yang, J. H.; Quan, F. J.; Mao, C. L.; Liu, Y.; Wang, B.; Lei, F. C.; Li, L. J.; Chan, A. W. M. et al. Efficient ammonia electrosynthesis from nitrate on strained ruthenium nanoclusters. J. Am. Chem. Soc. 2020, 142, 7036–7046.

[22]

Wan, X. K.; Wu, H. B.; Guan, B. Y.; Luan, D. Y.; Lou, X. W. Confining sub-nanometer Pt clusters in hollow mesoporous carbon spheres for boosting hydrogen evolution activity. Adv. Mater. 2020, 32, 1901349.

[23]

Peng, X. Y.; Mi, Y. Y.; Liu, X. J.; Sun, J. Q.; Qiu, Y.; Zhang, S. S.; Ke, X. X.; Wang, X. Z.; Luo, J. Self-driven dual hydrogen production system based on a bifunctional single-atomic Rh catalyst. J. Mater. Chem. A 2022, 10, 6134–6145.

[24]

Wan, X.; Liu, Q. T.; Liu, J. Y.; Liu, S. Y.; Liu, X. F.; Zheng, L. R.; Shang, J. X.; Yu, R. H.; Shui, J. L. Iron atom-cluster interactions increase activity and improve durability in Fe-N-C fuel cells. Nat. Commun. 2022, 13, 2963.

[25]

Wu, Y. C.; Wei, W.; Yu, R. H.; Xia, L. X.; Hong, X. F.; Zhu, J. X.; Li, J. T.; Lv, L.; Chen, W.; Zhao, Y. et al. Anchoring sub‐nanometer Pt clusters on crumpled paper‐like MXene enables high hydrogen evolution mass activity. Adv. Funct. Mater. 2022, 32, 2110910.

[26]

Li, L. L.; Jiang, Y. F.; Zhang, T. H.; Cai, H. F.; Zhou, Y. L.; Lin, B. Y.; Lin, X. Y.; Zheng, Y.; Zheng, L. R.; Wang, X. Y. et al. Size sensitivity of supported Ru catalysts for ammonia synthesis: From nanoparticles to subnanometric clusters and atomic clusters. Chem 2022, 8, 749–768.

[27]

Rong, H. P.; Ji, S. F.; Zhang, J. T.; Wang, D. S.; Li, Y. D. Synthetic strategies of supported atomic clusters for heterogeneous catalysis. Nat. Commun. 2020, 11, 5884.

[28]

Zhao, Y. F.; Kumar, P. V.; Tan, X.; Lu, X. X.; Zhu, X. F.; Jiang, J. J.; Pan, J.; Xi, S. B.; Yang, H. Y.; Ma, Z. P. et al. Modulating Pt-O-Pt atomic clusters with isolated cobalt atoms for enhanced hydrogen evolution catalysis. Nat. Commun. 2022, 13, 2430.

[29]

Hu, Q.; Gao, K. R.; Wang, X. D.; Zheng, H. J.; Cao, J. Y.; Mi, L. R.; Huo, Q. H.; Yang, H. P.; Liu, J. H.; He, C. X. Subnanometric Ru clusters with upshifted D band center improve performance for alkaline hydrogen evolution reaction. Nat. Commun. 2022, 13, 3958.

[30]

Chen, X.; Wang, X. T.; Le, J. B.; Li, S. M.; Wang, X.; Zhang, Y. J.; Radjenovic, P.; Zhao, Y.; Wang, Y. H.; Lin, X. M. et al. Revealing the role of interfacial water and key intermediates at ruthenium surfaces in the alkaline hydrogen evolution reaction. Nat. Commun. 2023, 14, 5289.

[31]

Li, X. T.; Shen, P.; Li, X. C.; Ma, D. W.; Chu, K. Sub-nm RuO x clusters on Pd metallene for synergistically enhanced nitrate electroreduction to ammonia. ACS Nano 2023, 17, 1081–1090.

[32]

AlAqad, K. M.; Kandiel, T. A.; Basheer, C. TiO2 nanotubes supported PtO x nanoclusters with enhanced mass activity for electrocatalytic hydrogen evolution. ChemCatChem 2020, 12, 5411–5419.

[33]

Cheng, X.; Li, Y. H.; Zheng, L. R.; Yan, Y.; Zhang, Y. F.; Chen, G.; Sun, S. R.; Zhang, J. J. Highly active, stable oxidized platinum clusters as electrocatalysts for the hydrogen evolution reaction. Energy Environ. Sci. 2017, 10, 2450–2458.

[34]

Yang, C. L.; Wang, L. N.; Yin, P.; Liu, J. Y.; Chen, M. X.; Yan, Q. Q.; Wang, Z. S.; Xu, S. L.; Chu, S. Q.; Cui, C. H. et al. Sulfur-anchoring synthesis of platinum intermetallic nanoparticle catalysts for fuel cells. Science 2021, 374, 459–464.

[35]

Liu, D.; Ding, T.; Wang, L. F.; Zhang, H. J.; Xu, L.; Pang, B. B.; Liu, X. K.; Wang, H. J.; Wang, J. H.; Wu, K. F. et al. In situ constructing atomic interface in ruthenium-based amorphous hybrid-structure towards solar hydrogen evolution. Nat. Commun. 2023, 14, 1720

[36]

Li, X. Z.; Guo, N.; Chen, Z. X.; Zhou, X.; Zhao, X. X.; Du, Y. H.; Ma, L.; Fang, Y. Y.; Xu, H. M.; Yang, H. M. et al. Atomically precise single metal oxide cluster catalyst with oxygen-controlled activity. Adv. Funct. Mater. 2022, 32, 2200933.

[37]

Gu, J.; Xu, Y. X.; Lu, J. L. Atom-precise low-nuclearity cluster catalysis: Opportunities and challenges. ACS Catal. 2023, 13, 5609–5634.

[38]

Liang, Q. R.; Li, Q. Z.; Xie, L.; Zeng, H.; Zhou, S.; Huang, Y. N.; Yan, M.; Zhang, X.; Liu, T. Y.; Zeng, J. et al. Superassembly of surface-enriched Ru nanoclusters from trapping-bonding strategy for efficient hydrogen evolution. ACS Nano 2022, 16, 7993–8004.

[39]

Lu, B. Z.; Guo, L.; Wu, F.; Peng, Y.; Lu, J. E.; Smart, T. J.; Wang, N.; Finfrock, Y. Z.; Morris, D.; Zhang, P. et al. Ruthenium atomically dispersed in carbon outperforms platinum toward hydrogen evolution in alkaline media. Nat. Commun. 2019, 10, 631.

[40]

Cao, L. L.; Luo, Q. Q.; Chen, J. J.; Wang, L.; Lin, Y.; Wang, H. J.; Liu, X. K.; Shen, X. Y.; Zhang, W.; Liu, W. et al. Dynamic oxygen adsorption on single-atomic ruthenium catalyst with high performance for acidic oxygen evolution reaction. Nat. Commun. 2019, 10, 4849.

[41]

Li, D. G.; Park, E. J.; Zhu, W. L.; Shi, Q. R.; Zhou, Y.; Tian, H. Y.; Lin, Y. H.; Serov, A.; Zulevi, B.; Baca, E. D. et al. Highly quaternized ppolystyrene ionomers for high performance anion exchange membrane water electrolysers. Nat. Energy 2020, 5, 378–385.

[42]

Cheng, W. R.; Zhao, X.; Su, H.; Tang, F. M.; Che, W.; Zhang, H.; Liu, Q. H. Lattice-strained metal-organic-framework arrays for bifunctional oxygen electrocatalysis. Nat. Energy 2019, 4, 115–122.

[43]

Zhou, W. L.; Su, H.; Cheng, W. R.; Li, Y. L.; Jiang, J. J.; Liu, M. H.; Yu, F. F.; Wang, W.; Wei, S. Q.; Liu, Q. H. Regulating the scaling relationship for high catalytic kinetics and selectivity of the oxygen reduction reaction. Nat. Commun. 2022, 13, 6414.

[44]

Osawa, M.; Tsushima, M.; Mogami, H.; Samjeské, G.; Yamakata, A. Structure of water at the electrified platinum-water interface: A study by surface-enhanced infrared absorption spectroscopy. J. Phys. Chem. C 2008, 112, 4248–4256.

[45]

Yao, Y.; Zhu, S. Q.; Wang, H. J.; Li, H.; Shao, M. H. A spectroscopic study on the nitrogen electrochemical reduction reaction on gold and platinum surfaces. J. Am. Chem. Soc. 2018, 140, 1496–1501.

[46]

Ni, W. Y.; Meibom, J. L.; Hassan, N. U.; Chang, M.; Chu, Y. C.; Krammer, A.; Sun, S. L.; Zheng, Y. W.; Bai, L. C.; Ma, W. C. et al. Synergistic interactions between PtRu catalyst and nitrogen-doped carbon support boost hydrogen oxidation. Nat. Catal. 2023, 6, 773–783.

[47]

Wang, Y. H.; Zheng, S. S.; Yang, W. M.; Zhou, R. Y.; He, Q. F.; Radjenovic, P.; Dong, J. C.; Li, S. N.; Zheng, J. X.; Yang, Z. L. et al. In situ Raman spectroscopy reveals the structure and dissociation of interfacial water. Nature 2021, 600, 81–85

[48]

Rodrigues, M. P. S.; Dourado, A. H. B.; Cutolo, L. O.; Parreira, L. S.; Alves, T. V.; Slater, T. J. A.; Haigh, S. J.; Camargo, P. H. C.; Cordoba de Torresi, S. I. Gold-rhodium nanoflowers for the plasmon-enhanced hydrogen evolution reaction under visible light. ACS Catal. 2021, 11, 13543–13555.

File
6726_ESM.pdf (2.4 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 04 March 2024
Revised: 23 April 2024
Accepted: 28 April 2024
Published: 03 June 2024

Copyright

© Tsinghua University Press 2024

Acknowledgements

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Nos. 12025505, 22179125, and 12205304), the National Key R&D Program of China (No. 2021YFA1600800), the Strategic Priority Research Program of the Chinese Academy of Sciences (No. XDB0450200), the University of China Innovation Program of Anhui Province (No. GXXT-2020-053), the Youth Innovation Promotion Association CAS (No. 2022458), the Fundamental Research Funds for the Central Universities (Nos. WK2060000038 and WK2310000113), and the Fellowship of China Postdoctoral Science Foundation (No. 2021TQ0319). We would thank NSRL, BSRF, and SSRF for the synchrotron beam time. This work was partially carried out at the Instruments Center for Physical Science and the Experimental Center of Engineering and Materials Science, University of Science and Technology of China.

Return