AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Highly efficient pH-universal hydrogen evolution reaction catalyzed by rapidly reconstructed bimetallic cobalt-molybdenum alloy cuboids arrays

Daolian Liu1Zihao Wang1Yan Zhang2Haiqing Zhou1,3Yong Zhang1Dongyang Li1Fang Yu1,3( )
Key Laboratory of Low-Dimensional Quantum Structures and Quantum Control of Ministry of Education, Key Laboratory for Matter Microstructure and Function of Hunan Province, Department of Physics and Synergetic Innovation Center for Quantum Effects and Applications, Hunan Normal University, Changsha 410081, China
State Key Laboratory of Marine Resource Utilization in South China Sea, and Department of Materials Science and Engineering, Hainan University, Haikou 570228, China
Institute of Interdisciplinary Studies, Hunan Normal University, Changsha 410081, China
Show Author Information

Graphical Abstract

An exceptional and durable pH-universal intermetallic electrocatalyst is directly developed from in-situ hydrogenation of bimetallic cobalt-molybdenum oxide arrays, which requires low overpotentials of 53, 31 and 33 mV to drive −10 mA·cm−2 in acidic, basic and neutral media, prominently outperforming noble Pt catalysts and most of inexpensive catalysts. In-situ X-ray photoelectron spectroscopy (XPS) analysis confirms the rapid reconstruction of this catalyst with Co3Mo and MoO2 synergistically promoting hydrogen evolution kinetics in different pH electrolytes.

Abstract

Given the inherent potential of seawater, industrial wastewater, and residential water as inherent feedstocks for hydrogen production through water electrolysis, there is a critical demand for the exploration of robust and stable hydrogen-evolving catalysts that can operate effectively across a diverse range of pH conditions. However, the pursuit of hydrogen-evolving electrocatalysts that demonstrate both good stability and high efficiency over a wide pH range remains a formidable challenge. Here we report the rational design and synthesis of an outstanding nanoporous hybrid electrocatalyst consisting of intermetallic cobalt-molybdenum alloy particles anchoring on MoO2 cuboid arrays, which demands very low overpotentials of 72, 123 and 134 mV to deliver a current density of −100 mA·cm−2 for hydrogen evolution reaction under alkaline, neutral and acidic conditions, respectively. These catalytic activities are superior to most non-precious-metal-based catalysts documented in the literatures, and are even comparable to noble metal catalysts. In particular, this alloy electrocatalyst exhibits excellent stability at 50 or 300 mA·cm−2 without obvious activity degradation, which is further supported by the undetectable changes in the surface chemical valence states on the basis of in-situ X-ray photoelectron spectroscopic studies. This study provides an innovative strategy for the design and synthesis of effective non-noble intermetallic catalysts for pH-universal hydrogen evolution over a wide pH range.

Electronic Supplementary Material

Download File(s)
6716_ESM.pdf (4.1 MB)

References

[1]

Li, D. Y.; Xiang, R.; Yu, F.; Zeng, J. S.; Zhang, Y.; Zhou, W. C.; Liao, L. L.; Zhang, Y.; Tang, D. S.; Zhou, H. Q. In situ regulating cobalt/iron oxide-oxyhydroxide exchange by dynamic iron incorporation for robust oxygen evolution at large current density. Adv. Mater. 2024, 36, 2305685.

[2]

Chen, J. X.; Long, Q. W.; Xiao, K.; Ouyang, T.; Li, N.; Ye, S. Y.; Liu, Z. Q. Vertically-interlaced NiFeP/MXene electrocatalyst with tunable electronic structure for high-efficiency oxygen evolution reaction. Sci. Bull. 2021, 66, 1063–1072.

[3]

Liao, L. L.; Zhou, Q.; Liu, F.; Ma, Y. H.; Cheng, C.; Huang, H. M.; Yu, F.; Long, R.; Zhou, H. Q. Deciphering the in situ reconstruction of metal phosphide/nitride dual heterostructures for robust alkaline hydrogen evolution above 3 A·cm−2. Small 2024, 20, 2311289.

[4]

Wei, J. X.; Xiao, K.; Chen, Y. X.; Guo, X. P.; Huang, B. L.; Liu, Z. Q. In situ precise anchoring of Pt single atoms in spinel Mn3O4 for a highly efficient hydrogen evolution reaction. Energy Environ. Sci. 2022, 15, 4592–4600.

[5]

Liao, L. L.; Li, D. Y.; Xiang, R.; Dang, Q.; Zhou, H. Q.; Zhang, Y.; Tang, S. B.; Yu, F. Multi-site trifunctional hydrangea-like electrocatalysts for efficient industrial-level water/urea electrolysis with current density exceeding 1000 mA·cm−2. Sci. China Mater. 2023, 66, 3520–3529.

[6]

Stamenkovic, V. R.; Strmcnik, D.; Lopes, P. P.; Markovic, N. M. Energy and fuels from electrochemical interfaces. Nat. Mater. 2017, 16, 57–69.

[7]

Hou, X. B.; Jiang, T. Y.; Xu, X. J.; Wang, X. K.; Zhou, J.; Xie, H. M.; Liu, Z. C.; Chu, L.; Huang, M. H. Coupling of NiFe-based metal-organic framework nanosheet arrays with embedded Fe-Ni3S2 clusters as efficient bifunctional electrocatalysts for overall water splitting. Chin. J. Struct. Chem. 2022, 41, 2207074–2207080.

[8]

Mo, Y. X.; Ni, Y. F.; Li, X.; Pan, R. W.; Tang, Y. X.; Deng, Y. H.; Xiao, B. B.; Tan, Y. L.; Yu, F. An efficient pH-universal non-noble hydrogen-evolving electrocatalyst from transition metal phosphides-based heterostructures. Int. J. Hydrogen Energy 2023, 48, 31101–31109.

[9]

Zhang, R.; Wang, X. X.; Yu, S. J.; Wen, T.; Zhu, X. W.; Yang, F. X.; Sun, X. N.; Wang, X. K.; Hu, W. P. Ternary NiCo2P x nanowires as pH-universal electrocatalysts for highly efficient hydrogen evolution reaction. Adv. Mater. 2017, 29, 1605502.

[10]

Zhou, Q.; Liao, L. L.; Zhou, H. Q.; Li, D. Y.; Tang, D. S.; Yu, F. Innovative strategies in design of transition metal-based catalysts for large-current-density alkaline water/seawater electrolysis. Mater. Today Phys. 2022, 26, 100727.

[11]

Cai, F. M.; Liao, L. L.; Zhao, Y.; Li, D. Y.; Zeng, J. S.; Yu, F.; Zhou, H. Q. Large-current-stable bifunctional nanoporous Fe-rich nitride electrocatalysts for highly efficient overall water and urea splitting. J. Mater. Chem. A 2021, 9, 10199–10207.

[12]

Yang, Y.; Wang, Y. T.; He, H. L.; Yan, W. J.; Fang, L.; Zhang, Y. B.; Qin, Y.; Long, R.; Zhang, X. M.; Fan, X. J. Covalently connected Nb4N5− x O x -MoS2 heterocatalysts with desired electron density to boost hydrogen evolution. ACS Nano 2020, 14, 4925–4937.

[13]

Liu, T.; Li, P.; Yao, N.; Cheng, G. Z.; Chen, S. L.; Luo, W.; Yin, Y. D. CoP-doped MOF-based electrocatalyst for pH-universal hydrogen evolution reaction. Angew. Chem. 2019, 131, 4727–4732.

[14]

Zhou, X.; Mo, Y. X.; Yu, F.; Liao, L. L.; Yong, X. R.; Zhang, F. M.; Li, D. Y.; Zhou, Q.; Sheng, T.; Zhou, H. Q. Engineering active iron sites on nanoporous bimetal phosphide/nitride heterostructure array enabling robust overall water splitting. Adv. Funct. Mater. 2023, 33, 2209465.

[15]

Liu, R.; Gong, Z. C.; Yan, M. M.; Ye, G. L.; Fei, H. L. Aligned porous carbon film with ultralow loadings of Pt single atoms and clusters for high-current-density hydrogen generation. Nano Res. 2023, 16, 256–263.

[16]

Wu, X. H.; Zhou, S.; Wang, Z. Y.; Liu, J. S.; Pei, W.; Yang, P. J.; Zhao, J. J.; Qiu, J. S. Engineering multifunctional collaborative catalytic interface enabling efficient hydrogen evolution in all pH range and seawater. Adv. Energy Mater. 2019, 9, 1901333.

[17]

Wang, G. J.; Sun, Y. Z.; Zhao, Y. D.; Zhang, Y.; Li, X. H.; Fan, L. Z.; Li, Y. C. Phosphorus-induced electronic structure reformation of hollow NiCo2Se4 nanoneedle arrays enabling highly efficient and durable hydrogen evolution in all-pH media. Nano Res. 2022, 15, 8771–8782.

[18]

Yang, Y.; Qian, Y. M.; Luo, Z. P.; Li, H. J.; Chen, L. L.; Cao, X. M.; Wei, S. Q.; Zhou, B.; Zhang, Z. H.; Chen, S. et al. Water induced ultrathin Mo2C nanosheets with high-density grain boundaries for enhanced hydrogen evolution. Nat. Commun. 2022, 13, 7225.

[19]

Wang, Z. H.; Liu, D. L.; Zhang, Y.; Li, D. Y.; Mo, Y. X.; Liao, L. L.; Zhou, Q.; Yu, F.; Zhou, H. Q. Phase transition engineering of nanoporous pyrite-phase NiSe2 foam by phosphorus doping for robust pH-universal hydrogen evolution. Appl. Phys. Lett. 2023, 123, 083901.

[20]

Morales-Guio, C. G.; Stern, L. A.; Hu, X. L. Nanostructured hydrotreating catalysts for electrochemical hydrogen evolution. Chem. Soc. Rev. 2014, 43, 6555–6569.

[21]

Fang, M.; Gao, W.; Dong, G. F.; Xia, Z. M.; Yip, S.; Qin, Y. B.; Qu, Y. Q.; Ho, J. C. Hierarchical NiMo-based 3D electrocatalysts for highly-efficient hydrogen evolution in alkaline conditions. Nano Energy 2016, 27, 247–254.

[22]

Hsieh, C. T.; Huang, C. L.; Chen, Y. A.; Lu, S. Y. NiFeMo alloy inverse-opals on Ni foam as outstanding bifunctional catalysts for electrolytic water splitting of ultra-low cell voltages at high current densities. Appl. Catal. B: Environ. 2020, 267, 118376.

[23]

Khalid, M.; Honorato, A. M. B.; Tremiliosi Filho, G.; Varela, H. Trifunctional catalytic activities of trimetallic FeCoNi alloy nanoparticles embedded in a carbon shell for efficient overall water splitting. J. Mater. Chem. A 2020, 8, 9021–9031.

[24]

Nairan, A.; Zou, P. C.; Liang, C. W.; Liu, J. X.; Wu, D.; Liu, P.; Yang, C. NiMo solid solution nanowire array electrodes for highly efficient hydrogen evolution reaction. Adv. Funct. Mater. 2019, 29, 1903747.

[25]

Tian, J. Q.; Cheng, N. Y.; Liu, Q.; Sun, X. P.; He, Y. Q.; Asiri, A. M. Self-supported NiMo hollow nanorod array: An efficient 3D bifunctional catalytic electrode for overall water splitting. J. Mater. Chem. A 2015, 3, 20056–20059.

[26]

Zhang, Q.; Li, P. S.; Zhou, D. J.; Chang, Z.; Kuang, Y.; Sun, X. M. Superaerophobic ultrathin Ni-Mo alloy nanosheet array from in situ topotactic reduction for hydrogen evolution reaction. Small 2017, 13, 1701648.

[27]

Shaner, M. R.; McKone, J. R.; Gray, H. B.; Lewis, N. S. Functional integration of Ni-Mo electrocatalysts with Si microwire array photocathodes to simultaneously achieve high fill factors and light-limited photocurrent densities for solar-driven hydrogen evolution. Energy Environ. Sci. 2015, 8, 2977–2984.

[28]

Han, G. H.; Kim, H.; Kim, J.; Kim, J.; Kim, S. Y.; Ahn, S. H. Micro-nanoporous MoO2@CoMo heterostructure catalyst for hydrogen evolution reaction. Appl. Catal. B: Environ. 2020, 270, 118895.

[29]

Zhang, J.; Wang, T.; Liu, P.; Liao, Z. Q.; Liu, S. H.; Zhuang, X. D.; Chen, M. W.; Zschech, E.; Feng, X. L. Efficient hydrogen production on MoNi4 electrocatalysts with fast water dissociation kinetics. Nat. Commun. 2017, 8, 15437.

[30]

Wang, J. H.; Cui, W.; Liu, Q.; Xing, Z. C.; Asiri, A. M.; Sun, X. P. Recent progress in cobalt-based heterogeneous catalysts for electrochemical water splitting. Adv. Mater. 2016, 28, 215–230.

[31]

Xia, X. F.; Lei, W.; Hao, Q. L.; Wang, W. J.; Wang, X. One-step synthesis of CoMoO4/graphene composites with enhanced electrochemical properties for supercapacitors. Electrochim. Acta 2013, 99, 253–261.

[32]

Mai, L. Q.; Yang, F.; Zhao, Y. L.; Xu, X.; Xu, L.; Luo, Y. Z. Hierarchical MnMoO4/CoMoO4 heterostructured nanowires with enhanced supercapacitor performance. Nat. Commun. 2011, 2, 381.

[33]

Chen, Y. Y.; Zhang, Y.; Zhang, X.; Tang, T.; Luo, H.; Niu, S.; Dai, Z. H.; Wan, L. J.; Hu, J. S. Self-templated fabrication of MoNi4/MoO3− x nanorod arrays with dual active components for highly efficient hydrogen evolution. Adv. Mater. 2017, 29, 1703311.

[34]

Wang, X. W.; Zhou, W. B.; Wang, Y. D.; Gong, L. K.; Liu, X. B.; Zhou, X. H. MoO2/Mo heterostructures for hydrogen evolution reaction and ammonia sensing in self-powered mode. Nano Energy 2023, 109, 108253.

[35]

Xu, Y. S.; Lv, H. H.; Lu, H. S.; Quan, Q. H.; Li, W. Z.; Cui, X. J.; Liu, G. B.; Jiang, L. H. Mg/seawater batteries driven self-powered direct seawater electrolysis systems for hydrogen production. Nano Energy 2022, 98, 107295.

[36]

Du, W.; Shi, Y. M.; Zhou, W.; Yu, Y. F.; Zhang, B. Unveiling the in-situ dissolution and polymerization of Mo in Ni4Mo alloy for promoting the hydrogen evolution reaction. Angew. Chem., Int. Ed. 2021, 60, 7051–7055.

[37]

Li, D. Y.; Liao, L. L.; Zhou, H. Q.; Zhao, Y.; Cai, F. M.; Zeng, J. S.; Liu, F.; Wu, H.; Tang, D. S.; Yu, F. Highly active non-noble electrocatalyst from Co2P/Ni2P nanohybrids for pH-universal hydrogen evolution reaction. Mater. Today Phys. 2021, 16, 100314.

[38]

Zhang, F. M.; Liu, Y. L.; Yu, F.; Pang, H. J.; Zhou, X.; Li, D. Y.; Ma, W. Q.; Zhou, Q.; Mo, Y. X.; Zhou, H. Q. Engineering multilevel collaborative catalytic interfaces with multifunctional iron sites enabling high-performance real seawater splitting. ACS Nano 2023, 17, 1681–1692.

[39]

Ma, W. Q.; Li, D. Y.; Liao, L. L.; Zhou, H. Q.; Zhang, F. M.; Zhou, X.; Mo, Y. X.; Yu, F. High-performance bifunctional porous iron-rich phosphide/nickel nitride heterostructures for alkaline seawater splitting. Small 2023, 19, 2207082.

[40]

Peng, Z.; Jia, D. S.; Al-Enizi, A. M.; Elzatahry, A. A.; Zheng, G. F. From water oxidation to reduction: Homologous Ni-Co based nanowires as complementary water splitting electrocatalysts. Adv. Energy Mater. 2015, 5, 1402031.

[41]

Ma, Y. Y.; Wu, C. X.; Feng, X. J.; Tan, H. Q.; Yan, L. K.; Liu, Y.; Kang, Z. H.; Wang, E. B.; Li, Y. G. Highly efficient hydrogen evolution from seawater by a low-cost and stable CoMoP@C electrocatalyst superior to Pt/C. Energy Environ. Sci. 2017, 10, 788–798.

[42]

Zheng, X. Z.; Shi, X. Y.; Ning, H. H.; Yang, R.; Lu, B.; Luo, Q.; Mao, S. J.; Xi, L. L.; Wang, Y. Tailoring a local acid-like microenvironment for efficient neutral hydrogen evolution. Nat. Commun. 2023, 14, 4209.

Nano Research
Pages 6977-6983
Cite this article:
Liu D, Wang Z, Zhang Y, et al. Highly efficient pH-universal hydrogen evolution reaction catalyzed by rapidly reconstructed bimetallic cobalt-molybdenum alloy cuboids arrays. Nano Research, 2024, 17(8): 6977-6983. https://doi.org/10.1007/s12274-024-6716-0
Topics:

278

Views

0

Crossref

0

Web of Science

0

Scopus

0

CSCD

Altmetrics

Received: 29 February 2024
Revised: 17 April 2024
Accepted: 22 April 2024
Published: 08 June 2024
© Tsinghua University Press 2024
Return