AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Scalable graphene foam with ultrahigh conductivity for stabilizing Pt towards efficient hydrogen evolution

Ming Zhao1,2Meng Huang5Huihui Jin2,3( )Dayin He4Wei Qian2Zixin Zhang1Daping He2 ( )
State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, China
Hubei Engineering Research Center of RF-Microwave Technology and Application, Wuhan University of Technology, Wuhan 430070, China
School of Information Engineering, Wuhan University of Technology, Wuhan 430070, China
School of Chemistry and Materials Science, University of Science and Technology of China, Hefei 230026, China
Sanya Science and Education Innovation Park of Wuhan University of Technology, Sanya 572000, China
Show Author Information

Graphical Abstract

Pt-doped low-defect multiplicated graphene foam Pt/GO-2850 exhibits superior catalytic activity and stability for hydrogen evolution reaction (HER) as well as extends further insight into the design self-supporting catalysts of high activity and stability with promising prominent application toward green energy devices.

Abstract

For the carbon-based catalyst to be active and stable, especially in harsh electrochemical environments, the key is to decrease the concentration of defects and raise the degree of graphitization of the carbon support. Herein, we develop a highly graphitized graphene foam with multiplicated structure to fabricate self-supporting Pt-based catalysts for efficient and stable hydrogen evolution reaction (HER) performance. Graphene foam (GO-2850) is obtained through an ultra-high temperature treatment at 2850 °C, with perfect graphene structure and extremely low defect, ensuring high electrical conductivity and corrosion resistance. Additionally, its multiplicated structure provides an inherently favorable environment for the dispersion of Pt nanoparticles (Pt NPs) and offers abundant channels for electrolyte infiltration during the catalytic process. As a result, the as-prepared Pt/GO-2850 is far active and stable than the Pt NPs supported on commercial carbon paper (Pt/CP) counterpart toward catalyzing HER, exhibiting an outstanding activity and long-term durability (300 h @ 10 mA·cm−2) in acidic/alkaline/seawater electrolytes. This can be attributed to the stronger interaction between the lower-defect GO-2850 substrate and Pt, as evidenced by characterization and theoretical calculations. This work extends further insight into the design self-supporting catalysts of high activity and stability with promising prominent application toward green energy devices.

Electronic Supplementary Material

Download File(s)
6712_ESM.pdf (1.4 MB)

References

[1]

Yang, F. N.; Luo, Y. T.; Yu, Q. M.; Zhang, Z. Y.; Zhang, S.; Liu, Z. B.; Ren, W. C.; Cheng, H. M.; Li, J.; Liu, B. L. A durable and efficient electrocatalyst for saline water splitting with current density exceeding 2000 mA·cm–2. Adv. Funct. Mater. 2021, 31, 2010367.

[2]

Frisch, M. L.; Thanh, T. N.; Arinchtein, A.; Hager, L.; Schmidt, J.; Brückner, S.; Kerres, J.; Strasser, P. Seawater electrolysis using all-PGM-free catalysts and cell components in an asymmetric feed. ACS Energy Lett. 2023, 8, 2387–2394.

[3]

Zhu, P.; Xiong, X.; Wang, D. S. Regulations of active moiety in single atom catalysts for electrochemical hydrogen evolution reaction. Nano Res. 2022, 15, 5792–5815.

[4]

Wang, L. G.; Wu, J. B.; Wang, S. W.; Liu, H. A.; Wang, Y.; Wang, D. S. The reformation of catalyst: From a trial-and-error synthesis to rational design. Nano Res. 2024, 17, 3261–3301.

[5]

Zhang, K. X.; Liu, Z. P. Electrochemical hydrogen evolution on Pt-based catalysts from a theoretical perspective. J. Chem. Phys. 2023, 158, 141002.

[6]

Zhang, L.; Zhu, J. W.; Li, X.; Mu, S. C.; Verpoort, F.; Xue, J. M.; Kou, Z. K.; Wang, J. Nurturing the marriages of single atoms with atomic clusters and nanoparticles for better heterogeneous electrocatalysis. Interdiscip. Mater. 2022, 1, 51–87.

[7]

Lv, H. F.; Mu, S. C. Nano-ceramic support materials for low temperature fuel cell catalysts. Nanoscale 2014, 6, 5063–5074.

[8]

Zhang, Z. H.; Liu, J.; Gu, J. J.; Su, L.; Cheng, L. F. An overview of metal oxide materials as electrocatalysts and supports for polymer electrolyte fuel cells. Energy Environ. Sci. 2014, 7, 2535–2558.

[9]

Saha, M. S.; Kundu, A. Functionalizing carbon nanotubes for proton exchange membrane fuel cells electrode. J. Power Sources 2010, 195, 6255–6261.

[10]

Jayabal, S.; Saranya, G.; Geng, D. S.; Lin, L. Y.; Meng, X. B. Insight into the correlation of Pt–support interactions with electrocatalytic activity and durability in fuel cells. J. Mater. Chem. A 2020, 8, 9420–9446.

[11]

Wang, T. L.; Chutia, A.; Brett, D. J. L.; Shearing, P. R.; He, G. J.; Chai, G. L.; Parkin, I. P. Palladium alloys used as electrocatalysts for the oxygen reduction reaction. Energy Environ. Sci. 2021, 14, 2639–2669.

[12]

Zhang, J. W.; Yuan, Y. L.; Gao, L.; Zeng, G. M.; Li, M. F.; Huang, H. W. Stabilizing Pt-based electrocatalysts for oxygen reduction reaction: Fundamental understanding and design strategies. Adv. Mater. 2021, 33, 2006494.

[13]

Sun, Q.; Li, X. H.; Wang, K. X.; Ye, T. N.; Chen, J. S. Inorganic non-carbon supported Pt catalysts and synergetic effects for oxygen reduction reaction. Energy Environ. Sci. 2023, 16, 1838–1869.

[14]

Zhu, C. X.; Yang, J. R.; Zhang, J. W.; Wang, X. Q.; Gao, Y.; Wang, D. S.; Pan, H. G. Single-atom materials: The application in energy conversion. Interdiscip. Mater. 2024, 3, 74–86.

[15]

Wang, L. G.; Su, H.; Zhang, Z.; Xin, J. J.; Liu, H.; Wang, X. G.; Yang, C. Y.; Liang, X.; Wang, S. W.; Liu, H. et al. Co-co dinuclear active sites dispersed on zirconium-doped heterostructured Co9S8/Co3O4 for high-current-density and durable acidic oxygen evolution. Angew. Chem., Int. Ed. 2023, 62, e202314185.

[16]

Kim, J.; Kim, H. E.; Lee, H. Single-atom catalysts of precious metals for electrochemical reactions. ChemSusChem 2018, 11, 104–113.

[17]

Galeano, C.; Meier, J. C.; Peinecke, V.; Bongard, H.; Katsounaros, I.; Topalov, A. A.; Lu, A. H.; Mayrhofer, K. J. J.; Schüth, F. Toward highly stable electrocatalysts via nanoparticle pore confinement. J. Am. Chem. Soc. 2012, 134, 20457–20465.

[18]

Wang, X. X.; Tan, Z. H.; Zeng, M.; Wang, J. N. Carbon nanocages: A new support material for Pt catalyst with remarkably high durability. Sci. Rep. 2014, 4, 4437.

[19]

Cao, Y. L.; Mao, S. J.; Li, M. M.; Chen, Y. Q.; Wang, Y. Metal/porous carbon composites for heterogeneous catalysis: Old catalysts with improved performance promoted by N-doping. ACS Catal. 2017, 7, 8090–8112.

[20]

Speder, J.; Zana, A.; Spanos, I.; Kirkensgaard, J. J. K.; Mortensen, K.; Arenz, M. On the influence of the Pt to carbon ratio on the degradation of high surface area carbon supported PEM fuel cell electrocatalysts. Electrochem. Commun. 2013, 34, 153–156.

[21]

Shao, Y. Y.; Zhang, S.; Kou, R.; Wang, X. Q.; Wang, C. M.; Dai, S.; Viswanathan, V.; Liu, J.; Wang, Y.; Lin, Y. H. Noncovalently functionalized graphitic mesoporous carbon as a stable support of Pt nanoparticles for oxygen reduction. J. Power Sources 2010, 195, 1805–1811.

[22]

Li, Y. J.; Li, Y. J.; Zhu, E. B.; McLouth, T.; Chiu, C. Y.; Huang, X. Q.; Huang, Y. Stabilization of high-performance oxygen reduction reaction Pt electrocatalyst supported on reduced graphene oxide/carbon black composite. J. Am. Chem. Soc. 2012, 134, 12326–12329.

[23]

Yoon, J. C.; Dai, X. Y.; Kang, K. N.; Hwang, J.; Kwak, M. J.; Ding, F.; Jang, J. H. Graphitization with suppressed carbon loss for high-quality reduced graphene oxide. ACS Nano 2021, 15, 11655–11666.

[24]

Lawal, A. T. Graphene-based nano composites and their applications. A review. Biosens. Bioelectron. 2019, 141, 111384.

[25]

Han, G. F.; Xiao, B. B.; Kim, S. J.; Li, F.; Ahmad, I.; Jeon, I. Y.; Baek, J. B. Tuning edge-oxygenated groups on graphitic carbon materials against corrosion. Nano Energy 2019, 66, 104112.

[26]

Chung, S.; Ham, K.; Kang, S.; Ju, H.; Lee, J. Enhanced corrosion tolerance and highly durable ORR activity by low Pt electrocatalyst on unique pore structured CNF in PEM fuel cell. Electrochim. Acta 2020, 348, 136346.

[27]

Sato, Y.; Yamada, N.; Kitano, S.; Kowalski, D.; Aoki, Y.; Habazaki, H. High-corrosion-resistance mechanism of graphitized platelet-type carbon nanofibers in the OER in a concentrated alkaline electrolyte. J. Mater. Chem. A 2022, 10, 8208–8217.

[28]

Shih, A. J.; Arulmozhi, N.; Koper, M. T. M. Electrocatalysis under cover: Enhanced hydrogen evolution via defective graphene-covered Pt(111). ACS Catal. 2021, 11, 10892–10901.

[29]

Zhu, X. B.; Liu, J. K.; Yang, K. R.; Zhang, L. Y.; Wang, S. P.; Liu, X. Q. Structurally engineered 3D porous graphene based phase change composite with highly efficient multi-energy conversion and versatile applications. Compos. Part B: Eng. 2024, 272, 111233.

[30]

Xiao, H.; Zhang, J. J.; Zhao, M.; Ma, J. C.; Li, Y.; Hu, T. J.; Zheng, Z. F.; Jia, J. F.; Wu, H. S. Electric field-assisted synthesis of Pt, carbon quantum dots-coloaded graphene hybrid for hydrogen evolution reaction. J. Power Sources 2020, 451, 227770.

[31]

Baby, A.; Trovato, L.; Di Valentin, C. Single atom catalysts (SAC) trapped in defective and nitrogen-doped graphene supported on metal substrates. Carbon 2021, 174, 772–788.

[32]

Guan, S. Y.; Yuan, Z. L.; Zhuang, Z. C.; Zhang, H. H.; Wen, H.; Fan, Y. P.; Li, B. J.; Wang, D. S.; Liu, B. Z. Why do single-atom alloys catalysts outperform both single-atom catalysts and nanocatalysts on MXene. Angew. Chem., Int. Ed. 2024, 63, e202316550.

[33]

Qian, Y. P.; Hu, M. L.; Li, L. P.; Liu, X. P.; Cao, S. Q.; Guo, C. G. Graphene oxide decorated nickel-cobalt nanosheet structures based on carbonized wood for electrocatalytic hydrogen evolution. Int. J. Hydrogen Energy 2023, 48, 13543–13554.

[34]

Li, X.; Tang, Y.; Song, J. H.; Yang, W.; Wang, M. S.; Zhu, C. Z.; Zhao, W. G.; Zheng, J. M.; Lin, Y. H. Self-supporting activated carbon/carbon nanotube/reduced graphene oxide flexible electrode for high performance supercapacitor. Carbon 2018, 129, 236–244.

[35]

Lv, Z. P.; Ma, W. S.; Wang, M.; Dang, J.; Jian, K. L.; Liu, D.; Huang, D. J. Co-constructing interfaces of multiheterostructure on MXene (Ti3C2T x )-modified 3D self-supporting electrode for ultraefficient electrocatalytic her in alkaline media. Adv. Funct. Mater. 2021, 31, 2102576.

[36]

Yan, L. T.; Xu, Y. L.; Chen, P.; Zhang, S.; Jiang, H. M.; Yang, L. Z.; Wang, Y.; Zhang, L.; Shen, J. X.; Zhao, X. B. et al. A freestanding 3D heterostructure film stitched by MOF-derived carbon nanotube microsphere superstructure and reduced graphene oxide sheets: A superior multifunctional electrode for overall water splitting and Zn-air batteries. Adv. Mater. 2020, 32, 2003313.

[37]

QuGao, J.; Cheng, Z. H.; Shao, C. X.; Zhao, Y.; Zhang, Z. P.; Qu, L. T. A 2D free-standing film-inspired electrocatalyst for highly efficient hydrogen production. J. Mater. Chem. A 2017, 5, 12027–12033.

[38]

Choi, J. I.; Abdelhafiz, A.; Buntin, P.; Vitale, A.; Robertson, A. W.; Warner, J.; Jang, S. S.; Alamgir, F. M. Contiguous and atomically thin Pt film with supra-bulk behavior through graphene-imposed epitaxy. Adv. Funct. Mater. 2019, 29, 1902274.

[39]

Ali, A.; Shen, P. K. Recent advances in graphene-based platinum and palladium electrocatalysts for the methanol oxidation reaction. J. Mater. Chem. A 2019, 7, 22189–22217.

[40]

Huang, H. J.; Yan, M. M.; Yang, C. Z.; He, H. Y.; Jiang, Q. G.; Yang, L.; Lu, Z. Y.; Sun, Z. Q.; Xu, X. T.; Bando, Y. et al. Graphene nanoarchitectonics: Recent advances in graphene-based electrocatalysts for hydrogen evolution reaction. Adv. Mater. 2019, 31, 1903415.

[41]

Qu, Y. T.; Li, Z. J.; Chen, W. X.; Lin, Y.; Yuan, T. W.; Yang, Z. K.; Zhao, C. M.; Wang, J.; Zhao, C.; Wang, X. et al. Direct transformation of bulk copper into copper single sites via emitting and trapping of atoms. Nat. Catal. 2018, 1, 781–786.

[42]

Jiang, K.; Liu, B. Y.; Luo, M.; Ning, S. C.; Peng, M.; Zhao, Y.; Lu, Y. R.; Chan, T. S.; De Groot, F. M. F.; Tan, Y. W. Single platinum atoms embedded in nanoporous cobalt selenide as electrocatalyst for accelerating hydrogen evolution reaction. Nat. Commun. 2019, 10, 1743.

[43]

Yao, X. Y.; Li, J. J.; Zhu, Y. J.; Li, L.; Zhang, W. M. Designed synthesis of three-dimensional callistemon-like networks structural multifunctional electrocatalyst: Graphitic-carbon-encapsulated Co nanoparticles/N-doped carbon nanotubes@carbon nanofibers for Zn-air batteries application. Compos. Part B: Eng. 2020, 193, 108058.

[44]

Li, J. M.; Li, J.; Ren, J.; Hong, H.; Liu, D. X.; Liu, L. Z.; Wang, D. H. Electric-field-treated Ni/Co3O4 film as high-performance bifunctional electrocatalysts for efficient overall water splitting. Nano-Micro Lett. 2022, 14, 148.

[45]

Suryawanshi, M. P.; Ghorpade, U. V.; Shin, S. W.; Suryawanshi, U. P.; Jo, E.; Kim, J. H. Hierarchically coupled Ni:FeOOH nanosheets on 3D N-doped graphite foam as self-supported electrocatalysts for efficient and durable water oxidation. ACS Catal. 2019, 9, 5025–5034.

[46]

Smiljanić, M.; Panić, S.; Bele, M.; Ruiz-Zepeda, F.; Pavko, L.; Gašparič, L.; Kokalj, A.; Gaberšček, M.; Hodnik, N. Improving the HER activity and stability of Pt nanoparticles by titanium oxynitride support. ACS Catal. 2022, 12, 13021–13033.

[47]

Abdelrahman, O. A.; Heyden, A.; Bond, J. Q. Microkinetic analysis of C3–C5 ketone hydrogenation over supported Ru catalysts. J. Catal. 2017, 348, 59–74.

[48]

Peng, Y.; Lu, B. Z.; Wang, N.; Li, L. G.; Chen, S. W. Impacts of interfacial charge transfer on nanoparticle electrocatalytic activity towards oxygen reduction. Phys. Chem. Chem. Phys. 2017, 19, 9336–9348.

[49]

Hu, Y. M.; Chao, T. T.; Li, Y. P.; Liu, P. G.; Zhao, T. H.; Yu, G.; Chen, C.; Liang, X.; Jin, H. L.; Niu, S. W. et al. Cooperative Ni(Co)-Ru-P sites activate dehydrogenation for hydrazine oxidation assisting self-powered H2 production. Angew. Chem., Int. Ed. 2023, 62, e202308800.

[50]

Mu, X. Q.; Zhang, X. Y.; Chen, Z. Y.; Gao, Y.; Yu, M.; Chen, D.; Pan, H. Z.; Liu, S. L.; Wang, D. S.; Mu, S. C. Constructing symmetry-mismatched Ru x Fe3– x O4 heterointerface-supported Ru clusters for efficient hydrogen evolution and oxidation reactions. Nano Lett. 2024, 24, 1015–1023.

[51]

Mu, X. Q.; Liu, S. L.; Zhang, M. Y.; Zhuang, Z. C.; Chen, D.; Liao, Y. R.; Zhao, H. Y.; Mu, S. C.; Wang, D. S.; Dai, Z. H. Symmetry-broken Ru nanoparticles with parasitic Ru-Co dual-single atoms overcome the volmer step of alkaline hydrogen oxidation. Angew. Chem., Int. Ed. 2024, 63, e2023196.

[52]

Wang, Z. H.; Zou, G. J.; Park, J. H.; Zhang, K. Progress in design and preparation of multi-atom catalysts for photocatalytic CO2 reduction. Sci. China Mater. 2024, 67, 397–423.

Nano Research
Pages 6968-6976
Cite this article:
Zhao M, Huang M, Jin H, et al. Scalable graphene foam with ultrahigh conductivity for stabilizing Pt towards efficient hydrogen evolution. Nano Research, 2024, 17(8): 6968-6976. https://doi.org/10.1007/s12274-024-6712-4
Topics:

572

Views

1

Crossref

1

Web of Science

1

Scopus

0

CSCD

Altmetrics

Received: 12 March 2024
Revised: 18 April 2024
Accepted: 18 April 2024
Published: 28 May 2024
© Tsinghua University Press 2024
Return