Journal Home > Just Accepted

Modulating the immune microenvironment to establish sustained positive feedback within immune pathways represents a promising avenue for the treatment of autoimmunity. However, the precise and efficient delivery of therapeutic systems to the subcutaneous basal layer to modulate immune disorders is a major challenge in the treatment of autoimmune psoriasis. In this project, we introduce a dual-functional microneedle (DF-MN) designed to combine MNs with multiple release kinetics and immunotherapy, the programmed treatment is achieved through segmented design of the MN structure, realizing the unification of rapid and long-lasting treatment of autoimmune psoriasis. In vivo imaging results showed that GelMA@M-CSF showed fluorescent signals after 5 days of delivery to subcutaneous tissues, whereas HA@IL-13 showed minimal fluorescent signals after 2 days. The multistage release behavior of MNs and the diffusion mechanism of drugs were explained at the molecular level, in combination with coarse-grained molecular dynamics. Additionally, DF-MN can successfully induce macrophage reprogramming in vitro and ameliorate overall symptoms in a psoriasis mice model, suggesting that it has the potential to be an effective strategy for the treatment of psoriasis and portends to be a transformative platform for the treatment of other autoimmune diseases.

Publication history
Copyright
Rights and permissions

Publication history

Received: 21 March 2024
Revised: 16 April 2024
Accepted: 18 April 2024
Available online: 19 April 2024

Copyright

© Tsinghua University Press 2024

Rights and permissions

Reprints and Permission requests may be sought directly from editorial office.
Email: nanores@tup.tsinghua.edu.cn

Return