Journal Home > Just Accepted

Electrochemical carbon dioxide reduction reaction (CO2RR) can produce value-added hydrocarbons from renewable electricity, providing a sustainable and promising approach to meet dual-carbon targets and alleviate the energy crisis. However, it is still challenging to improve the selectivity and stability of the products, especially the C2+ products. Here we propose to modulate the electronic structure of copper oxide (CuO) through lattice strain construction by zinc (Zn) doping to improve the selectivity of the catalyst to ethylene. Combined performance and in situ characterization analyses show that the compressive strain generated within the CuO lattice and the electronic structure modulation by Zn doping enhances the adsorption of the key intermediate *CO, thereby increasing the intrinsic activity of CO2RR and inhibiting the hydrogen precipitation reaction. Among the best catalysts had significantly improved ethylene selectivity of 60.5% and partial current density of 500 mA cm-2, and the highest C2+ Faraday efficiency of 71.47%. This paper provides a simple idea to study the modulation of CO2RR properties by heteroatom doped and lattice strain.

Publication history
Copyright
Rights and permissions

Publication history

Received: 01 March 2024
Revised: 11 April 2024
Accepted: 15 April 2024
Available online: 17 April 2024

Copyright

© Tsinghua University Press 2024

Rights and permissions

Reprints and Permission requests may be sought directly from editorial office.
Email: nanores@tup.tsinghua.edu.cn

Return