AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Modification of the CuO electronic structure for enhanced selective electrochemical CO2 reduction to ethylene

Xin Wu1Zhuang Tong1Yunliang Liu1Yaxi Li1Yuanyuan Cheng1Jingwen Yu1Peng Cao1Chunqiang Zhuang2Qiuzhong Shi3Naiyun Liu1( )Xiang Liu3( )Hongyu Liang4Haitao Li1( )
Institute for Energy Research, School of Energy and Power Engineering, Jiangsu University, Zhenjiang 212013, China
Faculty of Materials and Manufacturing, Beijing University of Technology, Beijing 100124, China
Institute of Medicine & Chemical Engineering, Zhenjiang College, Zhenjiang 212013, China
Institute of Advanced Manufacturing and Modern Equipment Technology, School of Mechanical Engineering, Jiangsu University, Zhenjiang 212013, China
Show Author Information

Graphical Abstract

The Zn-doped CuO catalyst was prepared by a simple hydrothermal method. Compressive stress effect was provided by metal doping to adjust the electronic structure of CuO, thus enhancing the ability of electrochemical CO2 reduction to produce ethylene.

Abstract

Electrochemical carbon dioxide reduction reaction (CO2RR) can produce value-added hydrocarbons from renewable electricity, providing a sustainable and promising approach to meet dual-carbon targets and alleviate the energy crisis. However, it is still challenging to improve the selectivity and stability of the products, especially the C2+ products. Here we propose to modulate the electronic structure of copper oxide (CuO) through lattice strain construction by zinc (Zn) doping to improve the selectivity of the catalyst to ethylene. Combined performance and in situ characterization analyses show that the compressive strain generated within the CuO lattice and the electronic structure modulation by Zn doping enhances the adsorption of the key intermediate *CO, thereby increasing the intrinsic activity of CO2RR and inhibiting the hydrogen precipitation reaction. Among the best catalysts had significantly improved ethylene selectivity of 60.5% and partial current density of 500 mA·cm–2, and the highest C2+ Faraday efficiency of 71.47%. This paper provides a simple idea to study the modulation of CO2RR properties by heteroatom doped and lattice strain.

Electronic Supplementary Material

Download File(s)
6708_ESM.pdf (1.6 MB)

References

[1]

Li, F. W.; Thevenon, A.; Rosas-Hernández, A.; Wang, Z. Y.; Li, Y. L.; Gabardo, C. M.; Ozden, A.; Dinh, C. T.; Li, J.; Wang, Y. et al. Molecular tuning of CO2-to-ethylene conversion. Nature 2020, 577, 509–513.

[2]

Birdja, Y. Y.; Pérez-Gallent, E.; Figueiredo, M. C.; Göttle, A. J.; Calle-Vallejo, F.; Koper, M. T. M. Advances and challenges in understanding the electrocatalytic conversion of carbon dioxide to fuels. Nat. Energy 2019, 4, 732–745.

[3]

Nitopi, S.; Bertheussen, E.; Scott, S. B.; Liu, X. Y.; Engstfeld, A. K.; Horch, S.; Seger, B.; Stephens, I. E. L.; Chan, K.; Hahn, C. et al. Progress and perspectives of electrochemical CO2 reduction on copper in aqueous electrolyte. Chem. Rev. 2019, 119, 7610–7672.

[4]

Zhuang, Z. C.; Xia, L. X.; Huang, J. Z.; Zhu, P.; Li, Y.; Ye, C. L.; Xia, M. G.; Yu, R. H.; Lang, Z. Q.; Zhu, J. X. et al. Continuous modulation of electrocatalytic oxygen reduction activities of single-atom catalysts through p-n junction rectification. Angew. Chem., Int. Ed. 2023, 62, e202212335.

[5]

Liu, Z. H.; Du, Y.; Yu, R. H.; Zheng, M. B.; Hu, R.; Wu, J. S.; Xia, Y. Y.; Zhuang, Z. C.; Wang, D. S. Tuning mass transport in electrocatalysis down to sub-5 nm through nanoscale grade separation. Angew. Chem., Int. Ed. 2023, 62, e202212653.

[6]

Chen, S.; Pei, L. S.; Peng, Y.; Zhang, X. F.; Xie, Z. L. Guanine-derived F, N co-doped carbon-shell encapsulated iron carbide nanoparticles for enhanced CO2 electroreduction activity. Nano Res. 2024, 17, 4744–4752

[7]

Alkhatib, I. I.; Garlisi, C.; Pagliaro, M.; Al-Ali, K.; Palmisano, G. Metal-organic frameworks for photocatalytic CO2 reduction under visible radiation: A review of strategies and applications. Catal. Today 2020, 340, 209–224.

[8]

Li, X.; Yu, J. G.; Jaroniec, M.; Chen, X. B. Cocatalysts for selective photoreduction of CO2 into solar fuels. Chem. Rev. 2019, 119, 3962–4179.

[9]

Albero, J.; Peng, Y.; García, H. Photocatalytic CO2 reduction to C2+ products. ACS Catal. 2020, 10, 5734–5749.

[10]

Shi, Z. B.; Yang, H. Y.; Gao, P.; Chen, X. Q.; Liu, H. J.; Zhong, L. S.; Wang, H.; Wei, W.; Sun, Y. H. Effect of alkali metals on the performance of CoCu/TiO2 catalysts for CO2 hydrogenation to long-chain hydrocarbons. Chin. J. Catal. 2018, 39, 1294–1302.

[11]

Gnanamani, M. K.; Hamdeh, H. H.; Shafer, W. D.; Hopps, S. D.; Davis, B. H. Hydrogenation of carbon dioxide over iron carbide prepared from alkali metal promoted iron oxalate. Appl. Catal. A: Gen. 2018, 564, 243–249.

[12]

Wang, J. J.; Zheng, X. R.; Wang, G. J.; Cao, Y. H.; Ding, W. L.; Zhang, J. F.; Wu, H.; Ding, J.; Hu, H. L.; Han, X. P. et al. Defective bimetallic selenides for selective CO2 electroreduction to CO. Adv. Mater. 2022, 34, 2106354.

[13]

Duan, Y. X.; Zhou, Y. T.; Yu, Z.; Liu, D. X.; Wen, Z.; Yan, J. M.; Jiang, Q. Boosting production of HCOOH from CO2 electroreduction via Bi/CeO x . Angew. Chem., Int. Ed. 2021, 60, 8798–8802.

[14]

Zhang, T. T.; Yuan, B. W.; Wang, W. L.; He, J.; Xiang, X. Tailoring *H intermediate coverage on the CuAl2O4/CuO catalyst for enhanced electrocatalytic CO2 reduction to ethanol. Angew. Chem., Int. Ed. 2023, 62, e202302096.

[15]

Xie, Y.; Ou, P. F.; Wang, X.; Xu, Z. Y.; Li, Y. C.; Wang, Z. Y.; Huang, J. E.; Wicks, J.; McCallum, C.; Wang, N. et al. High carbon utilization in CO2 reduction to multi-carbon products in acidic media. Nat. Catal. 2022, 5, 564–570.

[16]

Shan, J. J.; Shi, Y. X.; Li, H. Y.; Chen, Z. Y.; Sun, C. Y.; Shuai, Y.; Wang, Z. J. Effective CO2 electroreduction toward C2H4 boosted by Ce-doped Cu nanoparticles. Chem. Eng. J. 2022, 433, 133769.

[17]

Chen, S. H.; Ye, C. L.; Wang, Z. W.; Li, P.; Jiang, W. J.; Zhuang, Z. C.; Zhu, J. X.; Zheng, X. B.; Zaman, S.; Ou, H. H. et al. Selective CO2 reduction to ethylene mediated by adaptive small-molecule engineering of copper-based electrocatalysts. Angew. Chem., Int. Ed. 2023, 62, e202315621.

[18]

Li, Y. C.; Wang, Z. Y.; Yuan, T. G.; Nam, D. H.; Luo, M. C.; Wicks, J.; Chen, B.; Li, J.; Li, F. W.; de Arquer, F. P. G. et al. Binding site diversity promotes CO2 electroreduction to ethanol. J. Am. Chem. Soc. 2019, 141, 8584–8591.

[19]

Huang, X.; Yang, Z. Q.; Qiu, J. Q.; Tang, B.; Qin, C. L.; Yan, Y. F.; Ran, J. Y. Ethylene production over A/B-site doped BaCoO3 perovskite by chemical looping oxidative dehydrogenation of ethane. Fuel 2022, 327, 125210.

[20]

Seh, Z. W.; Kibsgaard, J.; Dickens, C. F.; Chorkendorff, I.; Nørskov, J. K.; Jaramillo, T. F. Combining theory and experiment in electrocatalysis: Insights into materials design. Science 2017, 355, eaad4998.

[21]

Ye, W. X.; Guo, X. L.; Ma, T. L. A review on electrochemical synthesized copper-based catalysts for electrochemical reduction of CO2 to C2+ products. Chem. Eng. J. 2021, 414, 128825.

[22]

Zhang, L.; Zhao, Z. J.; Gong, J. L. Nanostructured materials for heterogeneous electrocatalytic CO2 reduction and their related reaction mechanisms. Angew. Chem., Int. Ed. 2017, 56, 11326–11353.

[23]

Xie, H.; Wang, T. Y.; Liang, J. S.; Li, Q.; Sun, S. H. Cu-based nanocatalysts for electrochemical reduction of CO2. Nano Today 2018, 21, 41–54.

[24]

Zhang, B. H.; Zhang, J. T. Rational design of Cu-based electrocatalysts for electrochemical reduction of carbon dioxide. J. Energy Chem. 2017, 26, 1050–1066.

[25]

Deng, Y. L.; Huang, Y.; Ren, D.; Handoko, A. D.; Seh, Z. W.; Hirunsit, P.; Yeo, B. S. On the role of sulfur for the selective electrochemical reduction of CO2 to formate on CuS x catalysts. ACS Appl. Mater. Interfaces 2018, 10, 28572–28581.

[26]

Guan, S. Y.; Yuan, Z. L.; Zhuang, Z. C.; Zhang, H. H.; Wen, H.; Fan, Y. P.; Li, B. J.; Wang, D. S.; Liu, B. Z. Why do single-atom alloys catalysts outperform both single-atom catalysts and nanocatalysts on MXene. Angew. Chem., Int. Ed. 2024, 63, e202316550.

[27]

Zheng, X. B.; Yang, J. R.; Li, P.; Wang, Q. S.; Wu, J. B.; Zhang, E. H.; Chen, S. H.; Zhuang, Z. C.; Lai, W. H.; Dou, S. X. et al. Ir-Sn pair-site triggers key oxygen radical intermediate for efficient acidic water oxidation. Sci. Adv. 2023, 9, eadi8025.

[28]

Xie, M. S.; Xia, B. Y.; Li, Y. W.; Yan, Y.; Yang, Y. H.; Sun, Q.; Chan, S. H.; Fisher, A.; Wang, X. Amino acid modified copper electrodes for the enhanced selective electroreduction of carbon dioxide towards hydrocarbons. Energy Environ. Sci. 2016, 9, 1687–1695.

[29]

Yang, Q. Y.; Liu, J. W.; Cai, W. T.; Liang, X.; Zhuang, Z. C.; Liao, T.; Zhang, F. X.; Hu, W. K.; Liu, P. X.; Fan, S. J. et al. Non-heme iron single-atom nanozymes as peroxidase mimics for tumor catalytic therapy. Nano Lett. 2023, 23, 8585–8592.

[30]

Reske, R.; Mistry, H.; Behafarid, F.; Roldan Cuenya, B.; Strasser, P. Particle size effects in the catalytic electroreduction of CO2 on Cu nanoparticles. J. Am. Chem. Soc. 2014, 136, 6978–6986.

[31]

Zhuang, C. Q.; Chang, Y.; Li, W. M.; Li, S. J.; Xu, P.; Zhang, H.; Zhang, Y. H.; Zhang, C.; Gao, J. F.; Chen, G. et al. Light-induced variation of lithium coordination environment in g-C3N4 nanosheet for highly efficient oxygen reduction reactions. ACS Nano 2024, 18, 5206–5217.

[32]

Zhuang, C. Q.; Li, W. M.; Chang, Y.; Li, S. J.; Zhang, Y. H.; Li, Y. L.; Gao, J. F.; Chen, G.; Kang, Z. H. Coordination environment dominated catalytic selectivity of photocatalytic hydrogen and oxygen reduction over switchable gallium and nitrogen active sites. J. Mater. Chem. A 2024, 12, 5711–5718.

[33]

Zhu, H.; Sun, S. H.; Hao, J. C.; Zhuang, Z. C.; Zhang, S. G.; Wang, T. D.; Kang, Q.; Lu, S. L.; Wang, X. F.; Lai, F. L. et al. A high-entropy atomic environment converts inactive to active sites for electrocatalysis. Energy Environ. Sci. 2023, 16, 619–628.

[34]

Jiang, Y. W.; Wang, X. Y.; Duan, D. L.; He, C. H.; Ma, J.; Zhang, W. Q.; Liu, H. J.; Long, R.; Li, Z. B.; Kong, T. T. et al. Structural reconstruction of Cu2O superparticles toward electrocatalytic CO2 reduction with high C2+ products selectivity. Adv. Sci. 2022, 9, 2105292.

[35]

Yin, Z. Y.; Yu, J. Q.; Xie, Z. H.; Yu, S. W.; Zhang, L. Y.; Akauola, T.; Chen, J. G.; Huang, W. Y.; Qi, L.; Zhang, S. Hybrid catalyst coupling single-atom Ni and nanoscale Cu for efficient CO2 electroreduction to ethylene. J. Am. Chem. Soc. 2022, 144, 20931–20938.

[36]

Lum, Y.; Ager, J. W. Evidence for product-specific active sites on oxide-derived Cu catalysts for electrochemical CO2 reduction. Nat. Catal. 2019, 2, 86–93.

[37]

Eilert, A.; Cavalca, F.; Roberts, F. S.; Osterwalder, J.; Liu, C.; Favaro, M.; Crumlin, E. J.; Ogasawara, H.; Friebel, D.; Pettersson, L. G. M. et al. Subsurface oxygen in oxide-derived copper electrocatalysts for carbon dioxide reduction. J. Phys. Chem. Lett. 2017, 8, 285–290.

[38]

Kodali, M.; Santoro, C.; Herrera, S.; Serov, A.; Atanassov, P. Bimetallic platinum group metal-free catalysts for high power generating microbial fuel cells. J. Power Sources 2017, 366, 18–26.

[39]

Mu, X. Q.; Liu, S. L.; Zhang, M. Y.; Zhuang, Z. C.; Chen, D.; Liao, Y. R.; Zhao, H. Y.; Mu, S. C.; Wang, D. S.; Dai, Z. H. Symmetry-broken Ru nanoparticles with parasitic Ru-Co dual-single atoms overcome the volmer step of alkaline hydrogen oxidation. Angew. Chem., Int. Ed. 2024, 63, e202319618.

[40]

Fang, M. M.; Ji, Y. J.; Pi, Y. C.; Wang, P. T.; Hu, Z. W.; Lee, J. F.; Pang, H.; Li, Y. Y.; Shao, Q.; Huang, X. Q. Aluminum-doped mesoporous copper oxide nanofibers enabling high-efficiency CO2 electroreduction to multicarbon products. Chem. Mater. 2022, 34, 9023–9030.

[41]

Zhuang, Z. C.; Li, Y.; Li, Y. H.; Huang, J. Z.; Wei, B.; Sun, R.; Ren, Y. J.; Ding, J.; Zhu, J. X.; Lang, Z. Q. et al. Atomically dispersed nonmagnetic electron traps improve oxygen reduction activity of perovskite oxides. Energy Environ. Sci. 2021, 14, 1016–1028.

[42]

Luo, M. C.; Guo, S. J. Strain-controlled electrocatalysis on multimetallic nanomaterials. Nat. Rev. Mater. 2017, 2, 17059.

[43]

Xia, Z. H.; Guo, S. J. Strain engineering of metal-based nanomaterials for energy electrocatalysis. Chem. Soc. Rev. 2019, 48, 3265–3278.

[44]

Wei, Z. M.; Ding, J.; Duan, X. X.; Chen, G. L.; Wu, F. Y.; Zhang, L.; Yang, X. J.; Zhang, Q.; He, Q. Y.; Chen, Z. Y. et al. Enhancing selective electrochemical CO2 reduction by in situ constructing tensile-strained Cu catalysts. ACS Catal. 2023, 13, 4711–4718.

[45]

Liu, N. Y.; Wu, R. Q.; Liu, Y. X.; Liu, Y. L.; Deng, P. J.; Li, Y. X.; Du, Y. C.; Cheng, Y. Y.; Zhuang, Z. C.; Kang, Z. H. et al. Oxygen vacancy engineering of Fe-doped NiMoO4 for electrocatalytic N2 fixation to NH3. Inorg. Chem. 2023, 62, 11990–12000.

[46]

Liu, Y. L.; Zheng, Z. Y.; Jabeen, S.; Liu, N. Y.; Liu, Y. X.; Cheng, Y. Y.; Li, Y. X.; Yu, J. W.; Wu, X.; Yan, N. N. et al. Mechanochemical route to fabricate an efficient nitrate reduction electrocatalyst. Nano Res. 2024, 17, 4889–4897

[47]

Riley, C.; Zhou, S. L.; Kunwar, D.; De La Riva, A.; Peterson, E.; Payne, R.; Gao, L. Y.; Lin, S.; Guo, H.; Datye, A. Design of effective catalysts for selective alkyne hydrogenation by doping of ceria with a single-atom promotor. J. Am. Chem. Soc. 2018, 140, 12964–12973.

[48]

Jiang, Y. Q.; Choi, C.; Hong, S.; Chu, S. L.; Wu, T. S.; Soo, Y. L.; Hao, L. D.; Jung, Y.; Sun, Z. Y. Enhanced electrochemical CO2 reduction to ethylene over CuO by synergistically tuning oxygen vacancies and metal doping. Cell Rep. Phys. Sci. 2021, 2, 100356.

[49]

Wang, W. Z.; Zhou, Q.; Fei, X. M.; He, Y. B.; Zhang, P. C.; Zhang, G. L.; Peng, L.; Xie, W. J. Synthesis of CuO nano- and micro-structures and their Raman spectroscopic studies. CrystEngComm 2010, 12, 2232–2237.

[50]

Jiang, K.; Huang, Y. F.; Zeng, G. S.; Toma, F. M.; Goddard III, W. A.; Bell, A. T. Effects of surface roughness on the electrochemical reduction of CO2 over Cu. ACS Energy Lett. 2020, 5, 1206–1214.

[51]

Zou, S. Y.; Ji, Y. J.; Li, J.; Zhang, Y.; Jin, Z. Y.; Jia, L. H.; Guo, X. F.; Zhong, Z. Y.; Su, F. B. Novel leaflike Cu-O-Sn nanosheets as highly efficient catalysts for the Rochow reaction. J. Catal. 2016, 337, 1–13.

[52]

Zhang, Y. H.; Zhang, C.; Li, Y. L.; Xu, P.; Sun, Z. C.; Zhuang, C. Q. Variable metal valence states with band-edge shift over in-situ annealed CuTi-LDH nanosheets for efficient hydrogen and oxygen reduction reactions. Chem. Eng. J. 2023, 474, 145550.

[53]

Chang, C. J.; Lin, S. C.; Chen, H. C.; Wang, J. L.; Zheng, K. J.; Zhu, Y. P.; Chen, H. M. Dynamic reoxidation/reduction-driven atomic interdiffusion for highly selective CO2 reduction toward methane. J. Am. Chem. Soc. 2020, 142, 12119–12132.

[54]

Wang, Z. L.; Zhang, L.; Schülli, T. U.; Bai, Y.; Monny, S. A.; Du, A. J.; Wang, L. Z. Identifying copper vacancies and their role in the CuO based photocathode for water splitting. Angew. Chem., Int. Ed. 2019, 58, 17604–17609.

[55]

Zhuang, Z. C.; Li, Y. H.; Yu, R. H.; Xia, L. X.; Yang, J. R.; Lang, Z. Q.; Zhu, J. X.; Huang, J. Z.; Wang, J. O.; Wang, Y. et al. Reversely trapping atoms from a perovskite surface for high-performance and durable fuel cell cathodes. Nat. Catal. 2022, 5, 300–310.

[56]

Li, Y. C.; Yan, Z. F.; Hitt, J.; Wycisk, R.; Pintauro, P. N.; Mallouk, T. E. Bipolar membranes inhibit product crossover in CO2 electrolysis cells. Adv. Sustain. Syst. 2018, 2, 1700187.

[57]

Zhang, J.; Luo, W.; Züttel, A. Crossover of liquid products from electrochemical CO2 reduction through gas diffusion electrode and anion exchange membrane. J. Catal. 2020, 385, 140–145.

[58]

Ren, D.; Ang, B. S. H.; Yeo, B. S. Tuning the selectivity of carbon dioxide electroreduction toward ethanol on oxide-derived Cu x Zn catalysts. ACS Catal. 2016, 6, 8239–8247.

[59]

Feaster, J. T.; Shi, C.; Cave, E. R.; Hatsukade, T.; Abram, D. N.; Kuhl, K. P.; Hahn, C.; Nørskov, J. K.; Jaramillo, T. F. Understanding selectivity for the electrochemical reduction of carbon dioxide to formic acid and carbon monoxide on metal electrodes. ACS Catal. 2017, 7, 4822–4827.

[60]

Firet, N. J.; Smith, W. A. Probing the reaction mechanism of CO2 electroreduction over Ag films via operando infrared spectroscopy. ACS Catal. 2017, 7, 606–612.

[61]

Zhu, S. Q.; Jiang, B.; Cai, W. B.; Shao, M. H. Direct observation on reaction intermediates and the role of bicarbonate anions in CO2 electrochemical reduction reaction on Cu surfaces. J. Am. Chem. Soc. 2017, 139, 15664–15667.

[62]

Ma, W. C.; Xie, S. J.; Liu, T. T.; Fan, Q. Y.; Ye, J. Y.; Sun, F. F.; Jiang, Z.; Zhang, Q. H.; Cheng, J.; Wang, Y. Electrocatalytic reduction of CO2 to ethylene and ethanol through hydrogen-assisted C–C coupling over fluorine-modified copper. Nat. Catal. 2020, 3, 478–487.

[63]

Xiong, L. K.; Zhang, X.; Yuan, H.; Wang, J.; Yuan, X. Z.; Lian, Y. B.; Jin, H. D.; Sun, H.; Deng, Z.; Wang, D. et al. Breaking the linear scaling relationship by compositional and structural crafting of ternary Cu-Au/Ag nanoframes for electrocatalytic ethylene production. Angew. Chem., Int. Ed. 2021, 60, 2508–2518.

Nano Research
Pages 7194-7202
Cite this article:
Wu X, Tong Z, Liu Y, et al. Modification of the CuO electronic structure for enhanced selective electrochemical CO2 reduction to ethylene. Nano Research, 2024, 17(8): 7194-7202. https://doi.org/10.1007/s12274-024-6708-0
Topics:

406

Views

2

Crossref

0

Web of Science

0

Scopus

0

CSCD

Altmetrics

Received: 01 March 2024
Revised: 11 April 2024
Accepted: 15 April 2024
Published: 01 June 2024
© Tsinghua University Press 2024
Return